Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). Dynamical seesaw mechanism for Dirac neutrinos. Phys. Lett. B, 755, 363–366.
Abstract: So far we have not been able to establish that, as theoretically expected, neutrinos are their own anti-particles. Here we propose a dynamical way to account for the Dirac nature of neutrinos and the smallness of their mass in terms of a new variant of the seesaw paradigm in which the energy scale of neutrino mass generation could be accessible to the current LHC experiments.
|
Reig, M., Valle, J. W. F., Vaquera-Araujo, C. A., & Wilczek, F. (2017). A model of comprehensive unification. Phys. Lett. B, 774, 667–670.
Abstract: Comprehensive – that is, gauge and family – unification using spinors has many attractive features, but it has been challenged to explain chirality. Here, by combining an orbifold construction with more traditional ideas, we address that difficulty. Our candidate model features three chiral families and leads to an acceptable result for quantitative unification of couplings. A potential target for accelerator and astronomical searches emerges.
|
Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2016). Realistic SU(3)(c) x SU(3)(L) x U(1)(X) model with a type II Dirac neutrino seesaw mechanism. Phys. Rev. D, 94(3), 033012–4pp.
Abstract: Here we propose a realistic SU(3)(c) circle times SU(3)(L) circle times U(1)(X) electroweak gauge model with enlarged Higgs sector. The scheme allows for the natural implementation of a type II seesaw mechanism for Dirac neutrinos, while charged lepton and quark masses are reproduced in a natural way thanks to the presence of new scalars. The new SU(3)(c) circle times SU(3)(L) circle times U(1)(X) energy scale characterizing neutrino mass generation could be accessible to the current LHC experiments.
|
Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Unifying left-right symmetry and 331 electroweak theories. Phys. Lett. B, 766, 35–40.
Abstract: We propose a realistic theory based on the SU(3) c. SU(3) L. SU(3) R. U(1) Xgauge group which requires the number of families to match the number of colors. In the simplest realization neutrino masses arise from the canonical seesaw mechanism and their smallness correlates with the observed V-A nature of the weak force. Depending on the symmetry breaking path to the Standard Model one recovers either a left-right symmetric theory or one based on the SU(3) c. SU(3) L. U(1) symmetry as the “next” step towards new physics.
|
Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Three-family left-right symmetry with low-scale seesaw mechanism. J. High Energy Phys., 05(5), 100–10pp.
Abstract: We suggest a new left-right symmetric model implementing a low-scale see-saw mechanism in which quantum consistency requires three families of fermions. The symmetry breaking route to the Standard Model determines the profile of the “next” expected new physics, characterized either by the simplest left-right gauge symmetry or by the 3-3-1 scenario. The resulting Z' gauge bosons can be probed at the LHC and provide a production portal for the right-handed neutrinos. On the other hand, its flavor changing interactions would affect the K, D and B neutral meson systems.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Dark matter stability from Dirac neutrinos in scotogenic 3-3-1-1 theory. Phys. Rev. D, 102(1), 015022–11pp.
Abstract: We propose the simplest TeV-scale scotogenic extension of the original 3-3-1 theory, where dark matter stability is linked to the Dirac nature of neutrinos, which results from an unbroken B – L gauge symmetry. The new gauge bosons get masses through the interplay of spontaneous symmetry breaking a la Higgs and the Stueckelberg mechanism.
|
Leite, J., Morales, A., Valle, J. W. F., & Vaquera-Araujo, C. A. (2020). Scotogenic dark matter and Dirac neutrinos from unbroken gauged B – L symmetry. Phys. Lett. B, 807, 135537–5pp.
Abstract: We propose a simple extension of the standard model where neutrinos get naturally small “scotogenic” Dirac masses from an unbroken gauged B – L symmetry, ensuring dark matter stability. The associated gauge boson gets mass through the Stueckelberg mechanism. Two scenarios are identified, and the resulting phenomenology briefly sketched.
|
Kang, S. K., Popov, O., Srivastava, R., Valle, J. W. F., & Vaquera-Araujo, C. A. (2019). Scotogenic dark matter stability from gauged matter parity. Phys. Lett. B, 798, 135013–10pp.
Abstract: We explore the idea that dark matter stability results from the presence of a matter-parity symmetry, arising naturally as a consequence of the spontaneous breaking of an extended SU(3) circle times SU(3)(L) circle times U(1)(X) circle times U(1)(N) electroweak gauge symmetry with fully gauged B-L. Using this framework we construct a theory for scotogenic dark matter and analyze its main features.
|
Jimenez, E., & Vaquera-Araujo, C. A. (2016). Lagrangians for massive Dirac chiral superfields. Nucl. Phys. B, 907, 18–36.
Abstract: A variant for the superspin one-half massive superparticle in 4D, N = 1, based on Dirac superfields, is offered. As opposed to the current known models that use spinor chiral superfields, the propagating fields of the supermultiplet are those of the lowest mass dimensions possible: scalar, Dirac and vector fields. Besides the supersymmetric chiral condition, the Dirac superfields are not further constrained, allowing a very straightforward implementation of the path-integral method. The corresponding superpropagators are presented. In addition, an interaction super Yukawa potential, formed by Dirac and scalar chiral superfields, is given in terms of their component fields. The model is first presented for the case of two superspin one-half superparticles related by the charged conjugation operator, but in order to treat the case of neutral superparticles, the Majorana condition on the Dirac superfields is also studied. We compare our proposal with the known models of spinor superfields for the one-half superparticle and show that it is equivalent to them.
|
Hati, C., Patra, S., Reig, M., Valle, J. W. F., & Vaquera-Araujo, C. A. (2017). Towards gauge coupling unification in left-right symmetric SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) theories. Phys. Rev. D, 96(1), 015004–9pp.
Abstract: We consider the possibility of gauge coupling unification within the simplest realizations of the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) gauge theory. We present a first exploration of the renormalization group equations governing the “bottom-up” evolution of the gauge couplings in a generic model with free normalization for the generators. Interestingly, we find that for a SU(3)(c) x SU(3)(L) x SU(3)(R) x U(1)(X) symmetry breaking scale M-X as low as a few TeV one can achieve unification in the presence of leptonic octets. We briefly comment on possible grand unified theory frameworks which can embed the SU(3)(c) x SU(3)(L) x SU(3)(R) xU(1)(X) model as well as possible implications, such as lepton flavor violating physics at the LHC.
|