|
Antel, C. et al, Lopez-Pavon, J., Sandner, S., & Urrea, S. (2023). Feebly-interacting particles: FIPs 2022 Workshop Report. Eur. Phys. J. C, 83(12), 1122–266pp.
Abstract: Particle physics today faces the challenge of explaining the mystery of dark matter, the origin of matter over anti-matter in the Universe, the origin of the neutrino masses, the apparent fine-tuning of the electro-weak scale, and many other aspects of fundamental physics. Perhaps the most striking frontier to emerge in the search for answers involves new physics at mass scales comparable to familiar matter, below the GeV-scale, or even radically below, down to sub-eV scales, and with very feeble interaction strength. New theoretical ideas to address dark matter and other fundamental questions predict such feebly interacting particles (FIPs) at these scales, and indeed, existing data provide numerous hints for such possibility. A vibrant experimental program to discover such physics is under way, guided by a systematic theoretical approach firmly grounded on the underlying principles of the Standard Model. This document represents the report of the FIPs 2022 workshop, held at CERN between the 17 and 21 October 2022 and aims to give an overview of these efforts, their motivations, and the decadal goals that animate the community involved in the search for FIPs.
|
|
|
Coloma, P., Gonzalez-Garcia, M. C., Maltoni, M., Pinheiro, J. P., & Urrea, S. (2023). Global constraints on non-standard neutrino interactions with quarks and electrons. J. High Energy Phys., 08(8), 032–42pp.
Abstract: We derive new constraints on effective four-fermion neutrino non-standard interactions with both quarks and electrons. This is done through the global analysis of neutrino oscillation data and measurements of coherent elastic neutrino-nucleus scattering (CE & nu;NS) obtained with different nuclei. In doing so, we include not only the effects of new physics on neutrino propagation but also on the detection cross section in neutrino experiments which are sensitive to the new physics. We consider both vector and axial-vector neutral-current neutrino interactions and, for each case, we include simultaneously all allowed effective operators in flavour space. To this end, we use the most general parametrization for their Wilson coefficients under the assumption that their neutrino flavour structure is independent of the charged fermion participating in the interaction. The status of the LMA-D solution is assessed for the first time in the case of new interactions taking place simultaneously with up quarks, down quarks, and electrons. One of the main results of our work are the presently allowed regions for the effective combinations of non-standard neutrino couplings, relevant for long-baseline and atmospheric neutrino oscillation experiments.
|
|
|
Coloma, P., Gonzalez-Garcia, M. C., Maltoni, M., Pinheiro, J. P., & Urrea, S. (2022). Constraining new physics with Borexino Phase-II spectral data. J. High Energy Phys., 07(7), 138–35pp.
Abstract: We present a detailed analysis of the spectral data of Borexino Phase II, with the aim of exploiting its full potential to constrain scenarios beyond the Standard Model. In particular, we quantify the constraints imposed on neutrino magnetic moments, neutrino non-standard interactions, and several simplified models with light scalar, pseudoscalar or vector mediators. Our analysis shows perfect agreement with those performed by the collaboration on neutrino magnetic moments and neutrino non-standard interactions in the same restricted cases and expands beyond those, stressing the interplay between flavour oscillations and flavour non-diagonal interaction effects for the correct evaluation of the event rates. For simplified models with light mediators we show the power of the spectral data to obtain robust limits beyond those previously estimated in the literature.
|
|
|
Coloma, P., Hernandez, P., & Urrea, S. (2022). New bounds on axion-like particles from MicroBooNE. J. High Energy Phys., 08(8), 025–25pp.
Abstract: Neutrino experiments lie at the edge of the intensity frontier and therefore can be exploited to search for new light particles weakly coupled to the visible sector. In this work we derive new constraints on axion-like particles (ALPs) using data from the MicroBooNE experiment, from a search for e(+)e(-) pairs pointing in the direction of the NuMI absorber. In particular, we consider the addition of higher-dimensional effective operators coupling the ALP to the electroweak gauge bosons. These would induce K -> pi a from kaon decay at rest in the NuMI absorber, as well as ALP decays into pairs of leptons or photons. We discuss in detail and compare various results obtained for the decay width K -> pi a in previous literature. For the operator involving the Higgs, MicroBooNE already sets competitive bounds (comparable to those of NA62) for ALP masses between 100 and 200 MeV. We also compute the expected sensitivities from the full NuMI dataset recorded at MicroBooNE. Our results show that a search for a -> gamma gamma signal may be able to improve over current constraints from beam-dump experiments on the operator involving the ALP coupling to the W.
|
|
|
Coloma, P., López-Pavón, J., Molina-Bueno, L., & Urrea, S. (2024). New physics searches using ProtoDUNE and the CERN SPS accelerator. J. High Energy Phys., 01(1), 134–18pp.
Abstract: The exquisite capabilities of liquid Argon Time Projection Chambers make them ideal to search for weakly interacting particles in Beyond the Standard Model scenarios. Given their location at CERN the ProtoDUNE detectors may be exposed to a flux of such particles, produced in the collisions of 400 GeV protons (extracted from the Super Proton Synchrotron accelerator) on a target. Here we point out the interesting possibilities that such a setup offers to search for both long-lived unstable particles (Heavy Neutral Leptons, axion-like particles, etc) and stable particles (e.g. light dark matter, or millicharged particles). Our results show that, under conservative assumptions regarding the expected luminosity, this setup has the potential to improve over present bounds for some of the scenarios considered. This could be done within a short timescale, using facilities that are already in place at CERN, and without interfering with the experimental program in the North Area at CERN.
|
|
|
Coloma, P., Lopez-Pavon, J., Rosauro-Alcaraz, S., & Urrea, S. (2021). New physics from oscillations at the DUNE near detector, and the role of systematic uncertainties. J. High Energy Phys., 08(8), 065–33pp.
Abstract: We study the capabilities of the DUNE near detector to probe deviations from unitarity of the leptonic mixing matrix, the 3+1 sterile formalism and Non-Standard Interactions affecting neutrino production and detection. We clarify the relation and possible mappings among the three formalisms at short-baseline experiments, and we add to current analyses in the literature the study of the nu(mu)-> nu(tau) appearance channel. We study in detail the impact of spectral uncertainties on the sensitivity to new physics using the DUNE near detector, which has been widely overlooked in the literature. Our analysis shows that this plays an important role on the results and, in particular, that it can lead to a strong reduction in the sensitivity to sterile neutrinos from nu(mu)-> nu(e) transitions, by more than two orders of magnitude. This stresses the importance of a joint experimental and theoretical effort to improve our understanding of neutrino nucleus cross sections, as well as hadron production uncertainties and beam focusing effects. Nevertheless, even with our conservative and more realistic implementation of systematic uncertainties, we find that an improvement over current bounds in the new physics frameworks considered is generally expected if spectral uncertainties are below the 5% level.
|
|
|
Coloma, P., Martin-Albo, J., & Urrea, S. (2024). Discovering long-lived particles at DUNE. Phys. Rev. D, 109(3), 035013–24pp.
Abstract: Long-lived particles (LLPs) arise in many theories beyond the Standard Model. These may be copiously produced from meson decays (or through their mixing with the LLPs) at neutrino facilities and leave a visible decay signal in nearby neutrino detectors. We compute the expected sensitivity of the DUNE liquid argon (LAr) and gaseous argon near detectors (NDs) to light LLP decays. In doing so, we determine the expected backgrounds for both detectors, which have been largely overlooked in the literature, taking into account their angular and energy resolution. We show that searches for LLP decays into muon pairs, or into three pions, would be extremely clean. Conversely, decays into two photons would be affected by large backgrounds from neutrino interactions for both near detectors; finally, the reduced signal efficiency for e thorn e- pairs leads to a reduced sensitivity for ND-LAr. Our results are first presented in a model -independent way, as a function of the mass of the new state and its lifetime. We also provide detailed calculations for several phenomenological models with axionlike particles (coupled to gluons, electroweak bosons, or quark currents). Some of our results may also be of interest for other neutrino facilities using a similar detector technology (e.g., MicroBooNE, SBND, ICARUS, or the T2K near detector).
|
|