|
Gomez Dumm, D., Izzo Villafañe, M. F., Noguera, S., Pagura, V. P., & Scoccola, N. N. (2017). Strong magnetic fields in nonlocal chiral quark models. Phys. Rev. D, 96(11), 114012–19pp.
Abstract: We study the behavior of strongly interacting matter under a uniform intense external magnetic field in the context of nonlocal extensions of the Polyakov-Nambu-Jona-Lasinio model. A detailed description of the formalism is presented, considering the cases of zero and finite temperature. In particular, we analyze the effect of the magnetic field on the chiral restoration and deconfinement transitions, which are found to occur at approximately the same critical temperatures. Our results show that these models offer a natural framework to account for the phenomenon of inverse magnetic catalysis found in lattice QCD calculations.
|
|
|
Carlomagno, J. P., Gomez Dumm, D., Izzo Villafañe, M. F., Noguera, S., & Scoccola, N. N. (2022). Charged pseudoscalar and vector meson masses in strong magnetic fields in an extended NJL model. Phys. Rev. D, 106(9), 094035–17pp.
Abstract: The mass spectrum of pi(+) and rho(+) mesons in the presence of a static uniform magnetic field (B) over right arrow is studied within a two-flavor Nambu-Jona-Lasinio-like model. We improve previous calculations, taking into account the effect of Schwinger phases carried by quark propagators and using an expansion of meson fields in terms of the solutions of the corresponding equations of motion for nonzero B. It is shown that the meson polarization functions are diagonal in this basis. Our numerical results for the rho(+) meson spectrum are found to disfavor the existence of a meson condensate induced by the magnetic field. In the case of the pi(+) meson, pi-rho mixing effects are analyzed for the meson lowest-energy state. The predictions of the model are compared with available lattice QCD results.
|
|
|
Gomez Dumm, D., Noguera, S., & Scoccola, N. N. (2012). Form factors of radiative pion decays in nonlocal chiral quark models. Phys. Rev. D, 86(7), 074020–10pp.
Abstract: We study the radiative pion decay pi(+) -> e(+) nu(e)gamma within nonlocal chiral quark models that include wave function renormalization. In this framework we analyze the momentum dependence of the vector form factor F-V(q(2)) and the slope of the axial-vector form factor F-A(q(2)) at threshold. Our results are compared with available experimental information and with the predictions given by the Nambu-Jona-Lasinio model. In addition we calculate the low energy constants l(5) and l(6), comparing our results with the values obtained in chiral perturbation theory.
|
|
|
Carlomagno, J. P., Gomez Dumm, D., Noguera, S., & Scoccola, N. N. (2022). Neutral pseudoscalar and vector meson masses under strong magnetic fields in an extended NJL model: Mixing effects. Phys. Rev. D, 106(7), 074002–20pp.
Abstract: Mixing effects on the mass spectrum of light neutral pseudoscalar and vector mesons in the presence of an external uniform magnetic field (B) over right arrow are studied in the framework of a two-flavor Nambu-Jona-Lasinio (NJL)-like model. The model includes isoscalar and isovector couplings both in the scalar-pseudoscalar and vector sectors, and also incorporates flavor mixing through a ' t Hooft-like term. Numerical results for the B dependence of meson masses are compared with present lattice QCD results. In particular, it is shown that the mixing between pseudoscalar and vector meson states leads to a significant reduction of the mass of the lightest state. The role of chiral symmetry and the effect of the alignment of quark magnetic moments in the presence of the magnetic field are discussed.
|
|
|
Pagura, V. P., Gomez Dumm, D., Noguera, S., & Scoccola, N. N. (2016). Magnetic susceptibility of the QCD vacuum in a nonlocal SU(3) Polyakov-Nambu-Jona-Lasinio model. Phys. Rev. D, 94(5), 054038–13pp.
Abstract: The magnetic susceptibility of the QCD vacuum is analyzed in the framework of a nonlocal SU(3) Polyakov-Nambu-Jona-Lasinio model. Considering two different model parametrizations, we estimate the values of the u-and s-quark tensor coefficients and magnetic susceptibilities and then we extend the analysis to finite temperature systems. Our numerical results are compared to those obtained in other theoretical approaches and in lattice QCD calculations.
|
|
|
Gomez Dumm, D., Noguera, S., Scoccola, N. N., & Scopetta, S. (2014). Pion distribution amplitude and the pion-photon transition form factor in a nonlocal chiral quark model. Phys. Rev. D, 89(5), 054031–14pp.
Abstract: We study the pion distribution amplitude (pi DA) in the context of a nonlocal chiral quark model. The corresponding Lagrangian reproduces the phenomenological values of the pion mass and decay constant, as well as the momentum dependence of the quark propagator obtained in lattice calculations. It is found that the obtained pi DA has two symmetric maxima, which arise from the new contributions generated by the nonlocal character of the interactions. This pi DA is applied to leading order and next-to-leading order calculations of the pion-photon transition form factor. Implications of the results are discussed.
|
|
|
Coppola, M., Gomez Dumm, D., Noguera, S., & Scoccola, N. N. (2019). Pion-to-vacuum vector and axial vector amplitudes and weak decays of pions in a magnetic field. Phys. Rev. D, 99(5), 054031–18pp.
Abstract: We propose a model-independent parametrization for the one-pion-to-vacuum matrix elements of the vector and axial vector hadronic currents in the presence of an external uniform magnetic field. It is shown that, in general, these hadronic matrix elements can be written in terms of several gauge covariant Lorentz structures and form factors. Within this framework we obtain a general expression for the weak decay pi(- )-> l(nu)over bar(l) and discuss the corresponding limits of strong and weak external magnetic fields.
|
|
|
Coppola, M., Gomez Dumm, D., Noguera, S., & Scoccola, N. N. (2019). Neutral and charged pion properties under strong magnetic fields in the NJL model. Phys. Rev. D, 100(5), 054014–17pp.
Abstract: In the framework of the Nambu-Jona-Lasino (NJL) model, we study the effect of an intense external uniform magnetic field on neutral and charged pion masses and decay form factors. In particular, the treatment of charged pions is carried out on the basis of the Ritus eigenfunction approach to magnetized relativistic systems. Our analysis shows that in the presence of the magnetic field three and four nonvanishing pion-to-vacuum hadronic form factors can be obtained for the case of the neutral and charged pions, respectively. As expected, it is seen that for nonzero magnetic field the pi(0) meson can still be treated as a pseudo Nambu-Goldstone boson, and consequently the corresponding form factors are shown to satisfy various chiral relations. For definite parametrizations of the model, numerical results for pi(0) and pi(+/-) masses and decay constants are obtained and compared with previous calculations given in the literature.
|
|
|
Coppola, M., Gomez Dumm, D., Noguera, S., & Scoccola, N. N. (2024). Masses of magnetized pseudoscalar and vector mesons in an extended NJL model: The role of axial vector mesons. Phys. Rev. D, 109(5), 054014–30pp.
Abstract: We study the mass spectrum of light pseudoscalar and vector mesons in the presence of an external uniform magnetic field B., considering the effects of the mixing with the axial-vector meson sector. The analysis is performed within a two-flavor NJL-like model which includes isoscalar and isovector couplings together with a flavor mixing 't Hooft-like term. The effect of the magnetic field on charged particles is taken into account by retaining the Schwinger phases carried by quark propagators, and expanding the corresponding meson fields in proper Ritus-like bases. The spin-isospin and spin-flavor decomposition of meson mass states is also analyzed. For neutral pion masses it is shown that the mixing with axial vector mesons improves previous theoretical results, leading to a monotonic decreasing behavior with B that is in good qualitative agreement with lattice QCD (LQCD) calculations, both for the case of constant or B-dependent couplings. Regarding charged pions, it is seen that the mixing softens the enhancement of their mass with B. As a consequence, the energy becomes lower than the one corresponding to a pointlike pion, improving the agreement with LQCD results. The agreement is also improved for the magnetic behavior of the lowest.thorn energy state, which does not vanish for the considered range of values of B-a fact that can be relevant in connection with the occurrence of meson condensation for strong magnetic fields.
|
|
|
Gomez Dumm, D., Noguera, S., & Scoccola, N. N. (2017). eta-gamma and eta(')-gamma transition form factors in a nonlocal NJL model. Phys. Rev. D, 95(5), 054006–19pp.
Abstract: We study the eta and eta(') distribution amplitudes (DAs) in the context of a nonlocal SU(3)(L) circle times SUd(3)(R) chiral quark model. The corresponding Lagrangian allows us to reproduce the phenomenological values of pseudoscalar meson masses and decay constants, as well as the momentum dependence of the quark propagator arising from lattice calculations. It is found that the obtained DAs have two symmetric maxima, which arise from new contributions generated by the nonlocal character of the interactions. These DAs are then applied to the calculation of the eta-gamma and eta(')-gamma transition form factors. Implications of our results regarding higher twist corrections and/or contributions to the transition form factors originated by gluon-gluon components in the eta and eta(') mesons are discussed.
|
|