Esser, F., Madigan, M., Salas-Bernardez, A., Sanz, V., & Ubiali, M. (2024). Di-Higgs production via axion-like particles. J. High Energy Phys., 10(10), 164–22pp.
Abstract: Due to the pseudo-scalar nature of the axion-like particle (ALP), the CP-conserving production of two Higgs bosons via the ALP necessarily involves an additional Z or gamma boson. We examine the existing constraints from di-Higgs searches at Run 2 of the LHC and find that, despite the presence of extra objects in the final state, these searches are sensitive to a combination of ALP couplings to gluons and three-bosons in the TeV scale range. Additionally, we propose a specialized search strategy incorporating an energetic leptonic Z boson. This refined ALP-induced production process would allow for the identification of the h h -> 4 b-jet final state and could potentially probe the TeV scale using data from Run 2 of the LHC. This production process can also occur through a coupling between the top quark and the ALP. We translate the current constraints on di-Higgs production into new limits on the ALP-top coupling.
|
LHC BSM Reinterpretation Forum(Abdallah, W. et al), Mitsou, V. A., & Sanz, V. (2020). Reinterpretation of LHC results for new physics: status and recommendations after run 2. SciPost Phys., 9(2), 022–45pp.
Abstract: We report on the status of efforts to improve the reinterpretation of searches and measurements at the LHC in terms of models for new physics, in the context of the LHC Reinterpretation Forum. We detail current experimental offerings in direct searches for new particles, measurements, technical implementations and Open Data, and provide a set of recommendations for further improving the presentation of LHC results in order to better enable reinterpretation in the future. We also provide a brief description of existing software reinterpretation frameworks and recent global analyses of new physics that make use of the current data.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2022). Mapping the SMEFT to discoverable models. J. High Energy Phys., 09(9), 229–34pp.
Abstract: The matching of specific new physics scenarios onto the SMEFT framework is a well-understood procedure. The inverse problem, the matching of the SMEFT to UV scenarios, is more difficult and requires the development of new methods to perform a systematic exploration of models. In this paper we use a diagrammatic technique to construct in an automated way a complete set of possible UV models (given certain, well specified assumptions) that can produce specific groups of SMEFT operators, and illustrate its use by generating models with no tree-level contributions to four-fermion (4F) operators. Those scenarios, which only contribute to 4F at one-loop order, can contain relatively light particles that could be discovered at the LHC in direct searches. For this class of models, we find an interesting interplay between indirect SMEFT and direct searches. We discuss some examples on how this interplay would look like when combining low-energy observables with the SMEFT Higgs-fermion analyses and searches for resonance at the LHC.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2023). SMEFT goes dark: Dark Matter models for four-fermion operators. J. High Energy Phys., 09(9), 081–47pp.
Abstract: We study ultra-violet completions for d = 6 four-fermion operators in the standard model effective field theory (SMEFT), focusing on models that contain cold dark matter candidates. Via a diagrammatic method, we generate systematically lists of possible UV completions, with the aim of providing sets of models, which are complete under certain, well specified assumptions. Within these lists of models we rediscover many known DM models, as diverse as R-parity conserving supersymmetry or the scotogenic neutrino mass model. Our lists, however, also contain many new constructions, which have not been studied in the literature so far. We also briefly discuss how our DM models could be constrained by reinterpretations of LHC searches and the prospects for HL-LHC and future lepton colliders.
|
Esser, F., Madigan, M., Sanz, V., & Ubiali, M. (2023). On the coupling of axion-like particles to the top quark. J. High Energy Phys., 09(9), 063–39pp.
Abstract: In this paper we explore the coupling of a light axion-like particle (ALP) to top quarks. We use high-energy LHC probes, and examine both the direct probe to this coupling in associated production of a top-pair with an ALP, and the indirect probe through loop-induced gluon fusion to an ALP leading to top pairs. Using the latest LHC Run II data, we provide the best limit on this coupling. We also compare these limits with those obtained from loop-induced couplings in diboson final states, finding that the +MET channel is the best current handle on this coupling.
|
Bagnaschi, E., Ellis, J., Madigan, M., Mimasu, K., Sanz, V., & You, T. (2022). SMEFT analysis of m(W). J. High Energy Phys., 08(8), 308–22pp.
Abstract: We use the Fitmaker tool to incorporate the recent CDF measurement of mW in a global fit to electroweak, Higgs, and diboson data in the Standard Model Effective Field Theory (SMEFT) including dimension-6 operators at linear order. We find that including any one of the SMEFT operators O-HWB, O-HD, O (l) (l) or O ((3)) (H l) with a non-zero coefficient could provide a better fit than the Standard Model, with the strongest pull for O-HD and no tension with other electroweak precision data. We then analyse which tree-level single-field extensions of the Standard Model could generate such operator coefficients with the appropriate sign, and discuss the masses and couplings of these fields that best fit the CDF measurement and other data. In particular, the global fit favours either a singlet Z 0 vector boson, a scalar electroweak triplet with zero hypercharge, or a vector electroweak triplet with unit hypercharge, followed by a singlet heavy neutral lepton, all with masses in the multi-TeV range for unit coupling.
|
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2024). Fermionic UV models for neutral triple gauge boson vertices. J. High Energy Phys., 07(7), 275–28pp.
Abstract: Searches for anomalous neutral triple gauge boson couplings (NTGCs) provide important tests for the gauge structure of the standard model. In SMEFT (“standard model effective field theory”) NTGCs appear only at the level of dimension-8 operators. While the phenomenology of these operators has been discussed extensively in the literature, renormalizable UV models that can generate these operators are scarce. In this work, we study a variety of extensions of the SM with heavy fermions and calculate their matching to d = 8 NTGC operators. We point out that the complete matching of UV models requires four different CP-conserving d = 8 operators and that the single CPC d = 8 operator, most commonly used by the experimental collaborations, does not describe all possible NTGC form factors. Despite stringent experimental constraints on NTGCs, limits on the scale of UV models are relatively weak, because their contributions are doubly suppressed (being d = 8 and 1-loop). We suggest a series of benchmark UV scenarios suitable for interpreting searches for NTGCs in the upcoming LHC runs, obtain their current limits and provide estimates for the expected sensitivity of the high-luminosity LHC.
|
Folgado, M. G., & Sanz, V. (2022). Exploring the political pulse of a country using data science tools. J. Comput. Soc. Sci., 5, 987–1000.
Abstract: In this paper we illustrate the use of Data Science techniques to analyse complex human communication. In particular, we consider tweets from leaders of political parties as a dynamical proxy to political programmes and ideas. We also study the temporal evolution of their contents as a reaction to specific events. We analyse levels of positive and negative sentiment in the tweets using new tools adapted to social media. We also train a Fully-Connected Neural Network (FCNN) to recognise the political affiliation of a tweet. The FCNN is able to predict the origin of the tweet with a precision in the range of 71-75%, and the political leaning (left or right) with a precision of around 90%. This study is meant to be viewed as an example of how to use Twitter data and different types of Data Science tools for a political analysis.
|
Khosa, C. K., Sanz, V., & Soughton, M. (2022). A simple guide from machine learning outputs to statistical criteria in particle physics. SciPost Phys. Core, 5(4), 050–31pp.
Abstract: In this paper we propose ways to incorporate Machine Learning training outputs into a study of statistical significance. We describe these methods in supervised classification tasks using a CNN and a DNN output, and unsupervised learning based on a VAE. As use cases, we consider two physical situations where Machine Learning are often used: high-pT hadronic activity, and boosted Higgs in association with a massive vector boson.
|
Lee, H. M., Park, M., & Sanz, V. (2025). Gravity-Mediated Dark Matter at a low reheating temperature. J. High Energy Phys., 05(5), 126–26pp.
Abstract: We present a new study on the Gravity-Mediated Dark Matter (GMDM) scenario, where interactions between dark matter (DM) and the Standard Model are mediated by spin-two particles. Expanding on this established framework, we explore a novel regime characterized by a low reheating temperature that offers an alternative to the conventional thermal relic paradigm. This approach opens new possibilities for understanding the dynamics of the dark sector, encompassing both the dark matter particles (fermion, scalar and vector) and the spin-two mediators. Our analysis examines the constraints imposed by the relic abundance of DM, collider experiments, and direct detection searches, spanning a wide mass range for the dark sector, from very light to extremely heavy states. This work opens new possibilities for the phenomenology of GMDM.
|