| 
Citations
 | 
   web
Khosa, C. K., Sanz, V., & Soughton, M. (2021). Using machine learning to disentangle LHC signatures of Dark Matter candidates. SciPost Phys., 10(6), 151–26pp.
toggle visibility
Lessa, A., & Sanz, V. (2024). Going beyond Top EFT. J. High Energy Phys., 04(4), 107–29pp.
toggle visibility
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2024). Faking ZZZ vertices at the LHC. J. High Energy Phys., 12(12), 098–20pp.
toggle visibility
Cepedello, R., Esser, F., Hirsch, M., & Sanz, V. (2023). SMEFT goes dark: Dark Matter models for four-fermion operators. J. High Energy Phys., 09(9), 081–47pp.
toggle visibility
Esser, F., Madigan, M., Sanz, V., & Ubiali, M. (2023). On the coupling of axion-like particles to the top quark. J. High Energy Phys., 09(9), 063–39pp.
toggle visibility
Khosa, C. K., & Sanz, V. (2023). Anomaly Awareness. SciPost Phys., 15(2), 053–24pp.
toggle visibility
Khosa, C. K., Sanz, V., & Soughton, M. (2022). A simple guide from machine learning outputs to statistical criteria in particle physics. SciPost Phys. Core, 5(4), 050–31pp.
toggle visibility
Escudero, M., Rius, N., & Sanz, V. (2017). Sterile neutrino portal to Dark Matter I: the U(1)(B-L) case. J. High Energy Phys., 02(2), 045–27pp.
toggle visibility
Cranmer, K. et al, & Sanz, V. (2022). Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys., 12(1), 037–55pp.
toggle visibility
Gomez Ambrosio, R., ter Hoeve, J., Madigan, M., Rojo, J., & Sanz, V. (2023). Unbinned multivariate observables for global SMEFT analyses from machine learning. J. High Energy Phys., 03(3), 033–66pp.
toggle visibility