| 
Citations
 | 
   web
Hirn, J., Garcia, J. E., Montesinos-Navarro, A., Sanchez-Martin, R., Sanz, V., & Verdu, M. (2022). A deep Generative Artificial Intelligence system to predict species coexistence patterns. Methods Ecol. Evol., 13, 1052–1061.
toggle visibility
Hirn, J., Sanz, V., Garcia Navarro, J. E., Goberna, M., Montesinos-Navarro, A., Navarro-Cano, J. A., et al. (2024). Transfer learning of species co-occurrence patterns between plant communities. Ecol. Inform., 83, 102826–8pp.
toggle visibility
Huang, F., Sanz, V., Shu, J., & Xue, X. (2021). LIGO as a probe of dark sectors. Phys. Rev. D, 104(10), 095001–9pp.
toggle visibility
Kasieczka, G. et al, & Sanz, V. (2021). The LHC Olympics 2020: a community challenge for anomaly detection in high energy physics. Rep. Prog. Phys., 84(12), 124201–64pp.
toggle visibility
Khosa, C. K., Mars, L., Richards, J., & Sanz, V. (2020). Convolutional neural networks for direct detection of dark matter. J. Phys. G, 47(9), 095201–20pp.
toggle visibility
Khosa, C. K., & Sanz, V. (2022). On the Impact of the LHC Run 2 Data on General Composite Higgs Scenarios. Adv. High. Energy Phys., 2022, 8970837–13pp.
toggle visibility
Khosa, C. K., & Sanz, V. (2023). Anomaly Awareness. SciPost Phys., 15(2), 053–24pp.
toggle visibility
Khosa, C. K., Sanz, V., & Soughton, M. (2021). Using machine learning to disentangle LHC signatures of Dark Matter candidates. SciPost Phys., 10(6), 151–26pp.
toggle visibility
Khosa, C. K., Sanz, V., & Soughton, M. (2022). A simple guide from machine learning outputs to statistical criteria in particle physics. SciPost Phys. Core, 5(4), 050–31pp.
toggle visibility
Lessa, A., & Sanz, V. (2024). Going beyond Top EFT. J. High Energy Phys., 04(4), 107–29pp.
toggle visibility