Home | << 1 >> |
Aguilar, A. C., De Soto, F., Ferreira, M. N., Papavassiliou, J., Pinto-Gomez, F., Rodríguez-Quintero, J., et al. (2024). Nonperturbative four-gluon vertex in soft kinematics. Phys. Lett. B, 858, 139065–7pp.
Abstract: We present a nonperturbative study of the form factor associated with the projection of the full four-gluon vertex on its classical tensor, for a set of kinematics with one vanishing and three arbitrary external momenta. The treatment is based on the Schwinger-Dyson equation governing this vertex, and a large-volume lattice simulation, involving ten thousand gauge field configurations. The key hypothesis employed in both approaches is the “planar degeneracy”, which classifies diverse configurations by means of a single variable, thus enabling their meaningful “averaging”. The results of both approaches show notable agreement, revealing a considerable suppression of the averaged form factor in the infrared. The deviations from the exact planar degeneracy are discussed in detail, and a supplementary variable is used to achieve a more accurate description. The effective charge defined through this special form factor is computed within both approaches, and the results obtained are in excellent agreement.
|
Aguilar, A. C., Ferreira, M. N., Oliveira, B. M., Papavassiliou, J., & Santos, L. R. (2023). Schwinger poles of the three-gluon vertex: symmetry and dynamics. Eur. Phys. J. C, 83(10), 889–20pp.
Abstract: The implementation of the Schwinger mechanism endows gluons with a nonperturbative mass through the formation of special massless poles in the fundamental QCD vertices; due to their longitudinal character, these poles do not cause divergences in on-shell amplitudes, but induce detectable effects in the Green's functions of the theory. Particularly important in this theoretical setup is the three-gluon vertex, whose pole content extends beyond the minimal structure required for the generation of a gluon mass. In the present work we analyze these additional pole patterns by means of two distinct, but ultimately equivalent, methods: the Slavnov-Taylor identity satisfied by the three-gluon vertex, and the nonlinear Schwinger-Dyson equation that governs the dynamical evolution of this vertex. Our analysis reveals that the Slavnov-Taylor identity imposes strict model-independent constraints on the associated residues, preventing them from vanishing. Approximate versions of these constraints are subsequently recovered from the Schwinger-Dyson equation, once the elements responsible for the activation of the Schwinger mechanism have been duly incorporated. The excellent coincidence between the two approaches exposes a profound connection between symmetry and dynamics, and serves as a nontrivial self-consistency test of this particular mass generating scenario.
|
Aguilar, A. C., Ferreira, M. N., Papavassiliou, J., & Santos, L. R. (2024). Four-gluon vertex in collinear kinematics. Eur. Phys. J. C, 84(7), 676–27pp.
Abstract: To date, the four-gluon vertex is the least explored component of the QCD Lagrangian, mainly due to the vast proliferation of Lorentz and color structures required for its description. In this work we present a nonperturbative study of this vertex, based on the one-loop dressed Schwinger-Dyson equation obtained from the 4PI effective action. A vast simplification is brought about by resorting to “collinear” kinematics, where all momenta are parallel to each other, and by appealing to the charge conjugation symmetry in order to eliminate certain color structures. Out of the fifteen form factors that comprise the transversely-projected version of this vertex, two are singled out and studied in detail; the one associated with the classical tensorial structure is moderately suppressed in the infrared regime, while the other diverges logarithmically at the origin. Quite interestingly, both form factors display the property known as “planar degeneracy” at a rather high level of accuracy. With these results we construct an effective charge that quantifies the strength of the four-gluon interaction, and compare it with other vertex-derived charges from the gauge sector of QCD.
|
Aguilar, A. C., Ferreira, M. N., Papavassiliou, J., & Santos, L. R. (2023). Planar degeneracy of the three-gluon vertex. Eur. Phys. J. C, 83(6), 549–20pp.
Abstract: We present a detailed exploration of certain outstanding features of the transversely-projected three-gluon vertex, using the corresponding Schwinger-Dyson equation in conjunction with key results obtained from quenched lattice simulations. The main goal of this study is the scrutiny of the approximate property denominated “planar degeneracy”, unveiled when the Bose symmetry of the vertex is properly exploited. The planar degeneracy leads to a particularly simple parametrization of the vertex, reducing its kinematic dependence to essentially a single variable. Our analysis, carried out in the absence of dynamical quarks, reveals that the planar degeneracy is particularly accurate for the description of the form factor associated with the classical tensor, for a wide array of arbitrary kinematic configurations. Instead, the remaining three form factors display considerable violations of this property. In addition, and in close connection with the previous point, we demonstrate the numerical dominance of the classical form factor over all others, except in the vicinity of the soft-gluon kinematics. The final upshot of these considerations is the emergence of a very compact description for the three-gluon vertex in general kinematics, which may simplify significantly nonperturbative applications involving this vertex.
|