|
Miranda, O. G., Papoulias, D. K., Sanchez Garcia, G., Sanders, O., Tortola, M., & Valle, J. W. F. (2020). Implications of the first detection of coherent elastic neutrino-nucleus scattering (CEvNS) with liquid Argon. J. High Energy Phys., 05(5), 130–17pp.
Abstract: The CENNS-10 experiment of the COHERENT collaboration has recently reported the first detection of coherent-elastic neutrino-nucleus scattering (CEvNS) in liquid Argon with more than 3 sigma significance. In this work, we exploit the new data in order to probe various interesting parameters which are of key importance to CEvNS within and beyond the Standard Model. A dedicated statistical analysis of these data shows that the current constraints are significantly improved in most cases. We derive a first measurement of the neutron rms charge radius of Argon, and also an improved determination of the weak mixing angle in the low energy regime. We also update the constraints on neutrino non-standard interactions, electromagnetic properties and light mediators with respect to those derived from the first COHERENT-CsI data.
|
|
|
Miranda, O. G., Papoulias, D. K., Sanders, O., Tortola, M., & Valle, J. W. F. (2021). Low-energy probes of sterile neutrino transition magnetic moments. J. High Energy Phys., 12(12), 191–24pp.
Abstract: Sterile neutrinos with keV-MeV masses and non-zero transition magnetic moments can be probed through low-energy nuclear or electron recoil measurements. Here we determine the sensitivities of current and future searches, showing how they can probe a previously unexplored parameter region. Future coherent elastic neutrino-nucleus scattering (CEvNS) or elastic neutrino-electron scattering (EvES) experiments using a monochromatic 'Cr source can fully probe the region indicated by the recent XENONIT excess.
|
|
|
Miranda, O. G., Papoulias, D. K., Sanders, O., Tortola, M., & Valle, J. W. F. (2020). Future CEvNS experiments as probes of lepton unitarity and light sterile neutrinos. Phys. Rev. D, 102(11), 113014–14pp.
Abstract: We determine the sensitivities of short-baseline coherent elastic neutrino-nucleus scattering (CE nu NS) experiments using a pion decay at rest neutrino source as a probe for nonunitarity in the lepton sector, as expected in low-scale type-I seesaw schemes. We also identify the best configuration for probing light sterile neutrinos at future ton-scale liquid argon CE nu NS experiments, estimating the projected sensitivities on the sterile neutrino parameters. Possible experimental setups at the Spallation Neutron Source, Lujan facility and the European Spallation Source are discussed. Provided that systematic uncertainties remain under control, we find that CE nu NS experiments will be competitive with oscillation measurements in the long run.
|
|