LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Study of the rare B-s(0) and B-0 decays into the pi(+) pi(-) mu(+) mu(-) final state. Phys. Lett. B, 743, 46–55.
Abstract: A search for the rare decays B-s(0) -> pi(+) pi-mu(+) mu-and B-0 -> pi(+) pi-mu(+) mu-is performed in a data set corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. Decay candidates with pion pairs that have invariant mass in the range 0.5-1.3GeV/c(2) and with muon pairs that do not originate from a resonance are considered. The first observation of the decay B-s(0) -> pi(+) pi-mu(+) mu- and the first evidence of the decay B-0 -> pi(+) pi-mu(+) mu-are obtained and the branching fractions, restricted to the dipion-mass range considered, are measured to be B(B-s(0) -> pi(+) pi-mu(+) mu(-)) =(8.6 +/- 1.5(stat) +/- 0.7(syst) +/- 0.7 (norm)) x 10(-8) and B(B-0 -> pi(+) pi-mu(+) mu(-)) =(2.11 +/- 0.51(stat) +/- 0.15(syst) +/- 0.16(norm)) x10(-8), where the third uncertainty is due to the branching fraction of the decay B-0. -> J/Psi(mu(+) mu(-)) K*(892)(0)(-> K+ pi(-)), used as a normalisation.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures. J. High Energy Phys., 04(4), 024–27pp.
Abstract: Invariant mass distributions of B (+) pi (-) and B (0) pi (+) combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb(-1) of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B (1)(5721)(0,+) and B (2)(5747)(0,+) states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B (+) pi (-) and B (0) pi (+) combinations. The structures are consistent with the presence of four excited B mesons, labelled B (J) (5840)(0,+) and B (J) (5960)(0,+), whose masses and widths are obtained under different hypotheses for their quantum numbers.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). First observation and amplitude analysis of the B- -> D+K-pi(-) decay. Phys. Rev. D, 91(9), 092002–24pp.
Abstract: The B- -> D+K-pi(-) decay is observed in a data sample corresponding to 3.0 fb(-1) of pp collision data recorded by the LHCb experiment during 2011 and 2012. Its branching fraction is measured to be B(B- -> D+K-pi(-)) = (7.31 +/- 0.19 +/- 0.22 +/- 0.39) x 10(-5) where the uncertainties are statistical, systematic and from the branching fraction of the normalization channel B- -> D+pi(-)pi(-), respectively. An amplitude analysis of the resonant structure of the B- -> D+K-pi(-) decay is used to measure the contributions from quasi-two-body B- -> D-0* (2400)K-0(-), B- -> D-2* (2460)K-0(-), and B- -> D-J* (2760)K-0(-) decays, as well as from nonresonant sources. The D-J* (2760)(0) resonance is determined to have spin 1.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Determination of the branching fractions of B-s(0) -> D-s(-/+) K-/+ and B-0 -> Ds-K+. J. High Energy Phys., 05(5), 019–16pp.
Abstract: Measurements are presented of the branching fractions of the decays B-s(0) -> D-s(-/+) K--/+ and B-0 -> Ds-K+ relative to the decays B-s(0) -> D-s(-)pi(+) and B-0 -> D-s(-)pi(+), respectively. The data used correspond to an integrated luminosity of 3.0 fb(-1) of proton-proton collisions. The ratios of branching fractions are B(B-s(0) -> D-s(-/+) K--/+)/B(B-s(0) -> D-s(-)pi(+)) = 0.0752 +/- 0.0015 +/- 0.0019 and B(B-0 -> Ds-K+)/B(B-0 -> D-pi(+)) = 0.0129 +/- 0.0005 +/- 0.0008, where the uncertainties are statistical and systematic, respectively.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of forward Z -> e(+)e(-) production at root s=8 TeV. J. High Energy Phys., 05(5), 109–21pp.
Abstract: A measurement of the cross-section for Z-boson production in the forward region of pp collisions at 8 TeV centre-of-mass energy is presented. The measurement is based on a sample of Z -> e(+)e(-) decays reconstructed using the LHCb detector, corresponding to an integrated luminosity of 2.0 fb(-1). The acceptance is defined by the requirements 2.0 < eta < 4.5 and p(T) > 20 GeV for the pseudorapidities and transverse momenta of the leptons. Their invariant mass is required to lie in the range 60-120 GeV. The cross-section is determined to be sigma(pp -> Z -> e(+)e(-)) = 93.81 +/- 0.41(stat) +/- 1.48(syst) +/- 1.14(lumi) pb, where the first uncertainty is statistical and the second reflects all systematic effects apart from that arising from the luminosity, which is given as the third uncertainty. Differential cross-sections are presented as functions of the Z-boson rapidity and of the angular variable phi*, which is related to the Z-boson transverse momentum.
|
CMS and LHCb Collaborations(Khachatryan, V. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Observation of the rare B-s(0)->mu(+)mu(-) decay from the combined analysis of CMS and LHCb data. Nature, 522(7554), 68–72.
Abstract: The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Search for long-lived particles decaying to jet pairs. Eur. Phys. J. C, 75(4), 152–12pp.
Abstract: A search is presented for long-lived particles with a mass between 25 and 50 GeV/c(2) and a lifetime between 1 and 200 ps in a sample of proton-proton collisions at a centre-of-mass energy of root s = 7 TeV, corresponding to an integrated luminosity of 0.62 fb(-1), collected by the LHCb detector. The particles are assumed to be pair-produced by the decay of a standard model-like Higgs boson. The experimental signature of the long-lived particle is a displaced vertex with two associated jets. No excess above the background is observed and limits are set on the production cross-section as a function of the long-lived particle mass and lifetime.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Study of CP violation in B-/+ -> Dh(-/+) (h = K,pi) with the modes D -> K-/+pi(+/-)pi(0), D -> pi(+)pi(-)pi(0) and D -> K+K-pi(0). Phys. Rev. D, 91(11), 112014–15pp.
Abstract: An analysis of the decays of B--/+ -> DK -/+ and B--/+ -> D pi(-/+) is presented in which the D meson is reconstructed in the three-body final states K--/+pi(+/-)pi(0), pi(+)pi(-)pi(0) and K+K-pi(0). Using data from LHCb corresponding to an integrated luminosity of 3.0 fb(-1) of pp collisions, measurements of several CP observables are performed. First observations are obtained of the suppressed Atwood-Dunietz-Soni decay B--/+ -> [pi K-+(+/-)pi(0)](D)pi(-/+) and the quasi-Gronau-London-Wyler decay B--/+ -> [K+K-pi(0)](D)pi(-/+). The results are interpreted in the context of the unitarity triangle angle gamma and related parameters.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of the time-dependent CP asymmetries in B-s(0) -> J/psi K-S(0). J. High Energy Phys., 06(6), 131–22pp.
Abstract: The first measurement of decay-time-dependent CP asymmetries in the decay B-S(0) -> J/psi K-S(0) and an updated measurement of the ratio of branching fractions B(B-S(0) -> J/psi K-S(0))/B(B-0 -> J/psi K-S(0)) are presented. The results are obtained using data corresponding to an integrated luminosity of 3.0 fb(-1) of proton-proton collisions recorded with the LHCb detector at centre-of-mass energies of 7 and 8 TeV. The results on the CP asymmetries are A(Delta Gamma)(B-S(0) -> J/psi K-S(0)) = 0.49 +/- (0.77)(0.65)(stat) +/- 0.06(syst), C-dir(B-S(0) -> J/psi K-S(0)) = -0.28 +/- 0.41(stat) +/- 0.08(syst), S-mix(B-S(0) -> J/psi K-S(0)) = -0.08 +/- 0.40(stat) +/- 0.08(syst). The ratio B(B-S(0) -> J/psi K-S(0))/B(B-0 -> J/psi K-S(0)) is measured to be 0.0431 +/- 0.0017(stat) +/- 0.0012(syst) +/- 0.0025(f(s)/f(d)), where the last uncertainty is due to the knowledge of the B-S(0) and B-0 production fractions.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Differential branching fraction and angular analysis of Lambda(0)(b) -> Lambda mu(+)mu(-) decays. J. High Energy Phys., 06(6), 115–29pp.
Abstract: The differential branching fraction of the rare decay Lambda(0)(b) -> Lambda mu(+)mu(-) is measured as a function of q(2), the square of the dimuon invariant mass. The analysis is performed using proton-proton collision data, corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment. Evidence of signal is observed in the q(2) region below the square of the J/psi mass. Integrating over 15 < q(2) < 20 GeV2/c(4) the differential branching fraction is measured as dB(Lambda(0)(b) -> Lambda mu(+)mu(-))/dq(2) = (1.18(-0.08)(+0.09) +/- 0.03 +/- 0.27) x 10(-7) (GeV2/c(4))(-1) where the uncertainties are statistical, systematic and due to the normalisation mode Lambda(0)(b) -> J/psi Lambda , respectively. In the q(2) intervals where the signal is observed, angular distributions are studied and the forward-backward asymmetries in the dimuon (A(FB)(l)) and hadron (A(FB)(h)) systems are measured for the first time. In the range 15 < q(2) < 20GeV(2)/c(4) they are found to be A(FB)(l) = -0.05 +/- 0.09 (stat) +/- 0.03 (syst) and A(FB)(h) = -0.29 +/- 0.07 (stat) +/- 0.03 (syst).
|