LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Search for the lepton-flavour violating decays B-(s)(0) -> e(+/-) mu(-/+). J. High Energy Phys., 03(3), 078–20pp.
Abstract: A search for the lepton-flavour violating decays B-(s)(0) -> e(+/-)mu(-/+) and B-(s)(0) -> e(+/-)mu(-/+) performed based on a sample of proton-proton collision data corresponding to an integrated luminosity of 3 fb(-1), collected with the LHCb experiment at centre-of-mass energies of 7 and 8TeV. The observed yields are consistent with the background-only hypothesis. Upper limits on the branching fraction of the B-(s)(0) -> e(+/-)mu(-/+) decays are evaluated both in the hypotheses of an amplitude completely dominated by the heavy eigenstate and by the light eigenstate. The results are B(B-s(0) -> e(+/-)mu(-/+)) < 6.3 (5.4) x 10(-9) and B(B-s(0) -> e(+/-)mu(-/+)) < 7.2(6.0) x 10(-9) at 95% (90%) confidence level, respectively. The upper limit on the branching fraction of the B-0 -> e(+/-)mu(-/+) decay is also evaluated, obtaining B(B-0 -> e(+/-)mu(-/+)) < 1.3 (1.0) x 10(-9) at 95% (90%) confidence level. These are the strongest limits on these decays to date.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). First measurement of the CP-violating phase phi(dd)(s) in B-s(0) -> (K+pi(-))(K-pi(+)) decays. J. High Energy Phys., 03(3), 140–32pp.
Abstract: A flavour-tagged decay-time-dependent amplitude analysis of B-s(0) -> (K+pi(-))(K-pi(+)) decays is presented in the K-+/-pi(-/+) mass range from 750 to 1600 MeV/c(2). The analysis uses pp collision data collected with the LHCb detector at centre-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb(-1). Several quasi-two-body decay modes are considered, corresponding to K-+/-pi(-/+) combinations with spin 0, 1 and 2, which are dominated by the K-0(*)(800)(0) and K-0(*)(1430)(0), the K*(892)(0) and the K-2(*)(1430)(0) resonances, respectively. The longitudinal polarisation fraction for the B-s(0) -> K-*(892)(0) (K*) over bar (892)(0) decay is measured as f(L) = 0.208 +/- 0.032 +/- 0.046, where the first uncertainty is statistical and the second is systematic. The first measurement of the mixing-induced CP-violating phase in phi(d (d) over bar)(s), in b -> d (s) over bars transitions is performed, yielding a value of phi(d (d) over bar)(s)= -0.10 +/- 0.13 (stat) +/- 0.14 (syst) rad.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). A measurement of the CP asymmetry difference between Lambda(+)(C) -> pK(-)K(+) and p pi(-)pi(+) decays. J. High Energy Phys., 03(3), 182–21pp.
Abstract: The difference between the CP asymmetries in the decays Lambda(+)(C) -> pK(-)K(+) and Lambda(+)(C) -> p pi(-)pi(+) is presented. Proton-proton collision data taken at centre-of-mass energies of 7 and 8 TeV collected by the LHCb detector in 2011 and 2012 are used, corresponding to an integrated luminosity of 3 fb(-1). The Lambda(+)(C) candidates are reconstructed as part of the Lambda(0)(b) -> Lambda(+)(c)mu X- decay chain. In order to maximize the cancellation of production and detection asymmetries in the difference, the final-state kinematic distributions of the two samples are aligned by applying phase-space-dependent weights to the Lambda(+)(C) -> pK(-)K(+) sample. This alters the definition of the integrated CP asymmetry to A(CP)(wgt)(p pi(-)pi(+)). Both samples are corrected for reconstruction and selection efficiencies across the five-dimensional Lambda(+)(C) decay phase space. The difference in CP asymmetries is found to be Delta A(CP)(wgt) = A(CP)(pK(-)K(+)) – A(CP)(wgt)(p pi(-)pi(+)) = (0.30 +/- 0.91 +/- 0.61) %, where the first uncertainty is statistical and the second is systematic.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2019). Measurement of the ratio of branching fractions of the decays0(2S) and arrange Lambda. J. High Energy Phys., 03(3), 126–16pp.
Abstract: Using pp collisions corresponding to 3 fb integrated luminosity, recorded by the LHCb experiment at centre- of- mass energies of 7 and 8 TeV, the ratio of branching fractions B (0b ! (2 S) ) =B (0b ! J= ) = 0 : 513 0 : 023 (stat) 0 : 016 (syst) 0 : 011 (B) is determined. The first uncertainty is statistical, the second is systematic and the third is due to the external branching fractions used.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2019). Measurement of the branching fractions of the decays D+ -> K-K+K+, D+ -> pi-pi(+) K+ and D-s(+) -> pi-K+K+. J. High Energy Phys., 03(3), 176–24pp.
Abstract: The branching fractions of the doubly Cabibbo-suppressed decays D+ ! K, D+ ! and D+ s ! are measured using the decays D+ ! K and D+ s ! K as normalisation channels. The measurements are performed using proton-proton collision data collected with the LHCb detector at a centre-of-mass energy of 8TeV, corresponding to an integrated luminosity of 2.0 fb. The results are B (D+ ! K) B (D+ ! K) = (6 : 541 0 : 025 0 : 042) 10 B (D+ ! ) B (D+ ! K) = (5 : 231 0 : 009 0 : 023) 10 B (D+ s ! ) B (D+ s ! K) = (2 : 372 0 : 024 0 : 025) 10 where the uncertainties are statistical and systematic, respectively. These are the most precise measurements up to date.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Measurement of CP violation in B-0 -> (DD -/+)-D-*+/- decays. J. High Energy Phys., 03(3), 147–28pp.
Abstract: The decay-time-dependent CP asymmetry in B-0 -> (DD -/+)-D-*+/- decays is mea- sured using a data set corresponding to an integrated luminosity of 9 fb(-1) recorded by the LHCb detector in proton-proton collisions at centre-of-mass energies of 7, 8 and 13 TeV. The CP parameters are measured asSD*D=-0.861 +/- 0.077 +/- 0.019,Delta SD*D=0.019 +/- 0.075 +/- 0.012,CD*D=-0.059 +/- 0.092 +/- 0.020,Delta CD*D=-0.031 +/- 0.092 +/- 0.016,AD*D=0.008 +/- 0.014 +/- 0.006. The analysis provides the most precise single measurement of CP violation in this decay channel to date. All parameters are consistent with their current world average values.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Observation of the semileptonic decay B+-> p(p)over-bar mu(+)nu(mu). J. High Energy Phys., 03(3), 146–22pp.
Abstract: The Cabibbo-suppressed semileptonic decay B+-> pp over bar mu+nu μis observed for the first time using a sample of pp collisions corresponding to an integrated luminosity of 1.0, 2.0 and 1.7 fb at centre-of-mass energies of 7, 8 and 13TeV, respectively. The differential branching fraction is measured as a function of the pp invariant mass using the decay mode B+ ! J= K+ for normalisation. The total branching fraction is measured to be B (B+ ! pp+) = (5:27+0:23 0:21 0:15) 10 where the first uncertainty is statistical, the second systematic and the third is from the uncertainty on the branching fraction of the normalisation channel.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of indirect CP asymmetries in D-0 -> K-K+ and D-0 -> pi(-)pi(+) decays using semileptonic B decays. J. High Energy Phys., 04(4), 043–19pp.
Abstract: Time-dependent CP asymmetries in the decay rates of the singly Cabibbo-suppressed decays D-0 -> K-K+ and D-0 -> pi (-) pi(+) are measured in pp collision data corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment. The D-0 mesons are produced in semileptonic b-hadron decays, where the charge of the accompanying muon is used to determine the initial state as D-0 or (D) over bar (0). The asymmetries in effective lifetimes between D-0 and (D) over bar (0) decays, which are sensitive to indirect CP violation, are determined to be A(Gamma) (K-K+) = (-0.134 +/- 0.077(-0.034)(+0.026))%, A(Gamma) (pi(-)pi(+)) = -0.092 +/- 0.145(-0.033)(+0.025))%, where the first uncertainties are statistical and the second systematic. This result is in agreement with previous measurements and with the hypothesis of no indirect CP violation in D (0) decays.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Precise measurements of the properties of the B-1(5721)(0,+) and B-2*(5747)(0,+) states and observation of B-+,B-0 pi(-,+) mass structures. J. High Energy Phys., 04(4), 024–27pp.
Abstract: Invariant mass distributions of B (+) pi (-) and B (0) pi (+) combinations are investigated in order to study excited B mesons. The analysis is based on a data sample corresponding to 3.0 fb(-1) of pp collision data, recorded by the LHCb detector at centre-of-mass energies of 7 and 8 TeV. Precise measurements of the masses and widths of the B (1)(5721)(0,+) and B (2)(5747)(0,+) states are reported. Clear enhancements, particularly prominent at high pion transverse momentum, are seen over background in the mass range 5850-6000 MeV in both B (+) pi (-) and B (0) pi (+) combinations. The structures are consistent with the presence of four excited B mesons, labelled B (J) (5840)(0,+) and B (J) (5960)(0,+), whose masses and widths are obtained under different hypotheses for their quantum numbers.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region. J. High Energy Phys., 04(4), 064–23pp.
Abstract: An angular analysis of the B-0 -> K(*0)e(+) e(-) decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q(2)) interval between 0.002 and 1.120 GeV2/c(4). The angular observables F-L and A(T)(Re) which are related to the K-*0 polarisation and to the lepton forward-backward asymmetry, are measured to be F-L = 0.16 +/- 0.06 +/- 0.03 and A(T)(Re) = 0.10 +/- 0.18 +/- 0.05, where the first uncertainty is statistical and the second systematic. The angular observables A(T)((2)) and A(T)(Im) which are sensitive to the photon polarisation in this q(2) range, are found to be A(T)((2)) = – 0.23 +/- 0.23 +/- 0.05 and A(T)(Im) = 0.14 +/- 0.22 +/- 0.05. The results are consistent with Standard Model predictions.
|