LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Search for a dimuon resonance in the Upsilon mass region. J. High Energy Phys., 09(9), 147–21pp.
Abstract: A search is performed for a spin-0 boson, phi, produced in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV, using prompt phi -> mu(+)mu(-) decays and a data sample corresponding to an integrated luminosity of approximately 3.0 fb(-1) collected with the LHCb detector. No evidence is found for a signal in the mass range from 5.5 to 15 GeV. Upper limits are placed on the product of the production cross-section and the branching fraction into the dimuon final state. The limits are comparable to the best existing over most of the mass region considered and are the first to be set near the Upsilon resonances.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of the Lambda(0)(b) -> chi(c1) (3872)pK(-) decay. J. High Energy Phys., 09(9), 028–20pp.
Abstract: Using proton-proton collision data, collected with the LHCb detector and corresponding to 1.0, 2.0 and 1.9 fb(-1) of integrated luminosity at the centre-of-mass energies of 7, 8, and 13 TeV, respectively, the decay Lambda(0)(b) -> chi(c1)(3872)pK(-) with chi(c1)(3872) -> J/psi pi(+)pi(-) is observed for the first time. The significance of the observed signal is in excess of seven standard deviations. It is found that (58 +/- 15)% of the decays proceed via the two-body intermediate state chi(c1)(3872)Lambda(1520). The branching fraction with respect to that of the Lambda(0)(b) -> psi(2S)pK(-) decay mode, where the psi(2S) meson is reconstructed in the J/psi pi(+)pi(-) final state, is measured to be: B(Lambda(0)(b) -> chi(c1)(3872)pK(-))/B (Lambda(0)(b) -> psi(2S)pK(-)) x B(chi(c1)(3872) -> J/psi pi(+)pi(-))/B(psi(2S) -> J/psi pi(+)pi(-)) = (5.4 +/- 1.1 +/- 0.2) x 10(-2), where the first uncertainty is statistical and the second is systematic.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Search for CP violation using T-odd correlations in D-0 -> K+K-pi(+)pi(-) decays. J. High Energy Phys., 10(10), 005–21pp.
Abstract: A search for CP violation using T-odd correlations is performed using the four-body D-0 -> K+K-pi(+)pi(-) decay, selected from semileptonic B decays. The data sample corresponds to integrated luminosities of 1.0 fb(-1) and 2.0 fb(-1) recorded at the centre-of-mass energies of 7 TeV and 8 TeV, respectively. The CP-violating asymmetry alpha(T-odd)(CP) is measured to be (0.18 +/- 0.29 (stat) +/- 0.04 (syst))%. Searches for CP violation in different regions of phase space of the four-body decay, and as a function of the D-0 decay time, are also presented. No significant deviation from the CP conservation hypothesis is found.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Measurement of the CKM angle gamma using B-+/- -> DK +/- with D -> K-S(0)pi(+)pi(-), (KSK+K-)-K-0 decays. J. High Energy Phys., 10(10), 097–52pp.
Abstract: A binned Dalitz plot analysis of B-+/- -> DK +/- decays, with D -> K-S(0) pi(+)pi(-) and D -> K0 S K + K -, is performed to measure the C P -violating observables x(+/-) and y(+/-), which are sensitive to the Cabibbo-Kobayashi-Maskawa angle gamma. The analysis exploits a sample of proton-proton collision data corresponding to 3.0 fb(-1) collected by the LHCb experiment. Measurements from CLEO-c of the variation of the strong-interaction phase of the D decay over the Dalitz plot are used as inputs. The values of the parameters are found to be x(+) = (-7.7 +/- 2.4 +/- 1.0 +/- 0.4) x 10(-2), x(-) = (2.5 +/- 2.5 +/- 1.0 +/- 0.5) x 10(-2), y(+) = (-2.2 +/- 2.5 +/- 0.4 +/- 1.0) x 10-2, and y(-) = (7.5 +/- 2.9 +/- 0.5 +/- 1.4) x 10(-2). The first, second, and third uncertainties are the statistical, the experimental systematic, and that associated with the precision of the strong-phase parameters. These are the most precise measurements of these observables and correspond to +/- = (62(-14)(+15))degrees, with a second solution at gamma -> gamma + 180 degrees, and r(B) = 0.080(-0.021)(+0.019), where r(B) is the ratio between the suppressed and favoured B decay amplitudes.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Measurement of the chi(b) (3 P) mass and of the relative rate of chi(b1) (1 P) and chi(b2) (1 P) production. J. High Energy Phys., 10(10), 088–22pp.
Abstract: The production of chi(b) mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of root s = 7 and 8 TeV and corresponding to an integrated luminosity of 3.0 fb(-1). The chi(b) mesons are identified through their decays to Upsilon(1 S)gamma and Upsilon(2 S)gamma using photons that converted to e(+)e (-) pairs in the detector. The relative prompt production rate of chi(b1)(1 P) and chi(b2)(1 P) mesons is measured as a function of the Upsilon(1 S) transverse momentum in the chi(b) rapidity range 2.0 < y < 4.5. A precise measurement of the chi(b) (3 P) mass is also performed. Assuming a mass splitting between the chi(b1)(3 P) and the chi(b2)(3 P) states of 10.5 MeV/c(2), the measured mass of the chi(b1)(3 P) meson is m (chi(b1)(3 P)) = 10515.7(-3.9)(+2.2)(stat)(-2.1)(+1.5)(syst) MeV/c(2).
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). First observations of the rare decays B (+) -> K (+)pi (+)pi (-)mu(+)mu (-) and B (+)-> phi K (+)mu(+)mu (-). J. High Energy Phys., 10(10), 064–18pp.
Abstract: First observations of the rare decays B (+) -> K (+)pi (+) pi (-) μ(+) μ(-) and B (+)-> phi K+ mu(+)mu(-) are presented using data corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The branching fractions of the decays are B(B (+) -> K (+)pi (+) pi (-) μ(+) μ(-) ) = (4.36 (-0.27) (+0.29) (stat) +/- 0.21 (syst) +/- (norm)) x 10(-7), B(B (+)-> phi K+ mu(+)mu(-)) = (0.82 (+0.19)(-0.17) (stat) (+0.10)(-0.04) (syst) +/- 0.27 (norm)) x 10(-7) where the uncertainties are statistical, systematic, and due to the uncertainty on the branching fractions of the normalisation modes. A measurement of the differential branching fraction in bins of the invariant mass squared of the dimuon system is also presented for the decay B (+) -> K (+)pi (+) pi (-) μ(+) μ(-)
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Search for CP violation in D (+/-) -> (KSK +/-)-K-0 and D-s(+/-) -> K-S(0)pi(+/-) decays. J. High Energy Phys., 10(10), 025–19pp.
Abstract: A search for CP violation in Cabibbo-suppressed D (+/-) -> aEuro parts per thousand K (S) (0) K (+/-) and D (s) (+/-) -> aEuro parts per thousand K (S) (0) pi (+/-) decays is performed using pp collision data, corresponding to an integrated luminosity of 3 fb, recorded by the LHCb experiment. The individual CP-violating asymmetries are measured to be <Equation ID=“Equa”> <MediaObject> </MediaObject> </Equation> assuming that CP violation in the Cabibbo-favoured decays is negligible. A combination of the measured asymmetries for the four decay modes D ((s)) (+/-) -> aEuro parts per thousand K (S) (0) K (+/-) and D ((s)) (+/-) -> aEuro parts per thousand K (S) (0) pi (+/-) gives the sum <Equation ID=“Equb”> <MediaObject> </MediaObject> </Equation> In all cases, the first uncertainties are statistical and the second systematic. The results represent the most precise measurements of these asymmetries to date and show no evidence for CP violation.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of the track reconstruction efficiency at LHCb. J. Instrum., 10, P02007–23pp.
Abstract: The determination of track reconstruction efficiencies at LHCb using J/psi -> mu(+)mu(-) decays is presented. Efficiencies above 95% are found for the data taking periods in 2010, 2011, and 2012. The ratio of the track reconstruction efficiency of muons in data and simulation is compatible with unity and measured with an uncertainty of 0.8% for data taking in 2010, and at a precision of 0.4% for data taking in 2011 and 2012. For hadrons an additional 1.4% uncertainty due to material interactions is assumed. This result is crucial for accurate cross section and branching fraction measurements in LHCb.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Identification of beauty and charm quark jets at LHCb. J. Instrum., 10, P06013–29pp.
Abstract: Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of the B(s) (0) -> φφ branching fraction and search for the decay B(0) -> φφ. J. High Energy Phys., 10(10), 053–18pp.
Abstract: Using a dataset corresponding to an integrated luminosity of 3.0 fb(-1) collected in pp collisions at centre-of-mass energies of 7 and 8 TeV, the B (s) (0) -> aEuro parts per thousand I center dot I center dot branching fraction is measured to be B(B-0 -> phi phi) = (1.84 +/- 0.05(stat) +/- 0.07 (syst) +/- 0.11 (f(s)/f(d)) +/- 0.12 (norm)) x 10(-5) where f (s) /f (d) represents the ratio of the B (s) (0) to B (0) production cross-sections, and the B (0) -> I center dot K (*)(892)(0) decay mode is used for normalization. This is the most precise measurement of this branching fraction to date, representing a factor five reduction in the statistical uncertainty compared with the previous best measurement. A search for the decay B (0) -> I center dot I center dot is also made. No signal is observed, and an upper limit on the branching fraction is set as B(B-0 -> phi phi < 2.8 x 10(-8)) at 90% confidence level. This is a factor of seven improvement compared to the previous best limit.
|