|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Observation of the Decays Alpha(0)(b) -> chi(c1)pK(-) and Alpha(0)(b) ->chi(c2)pK(-). Phys. Rev. Lett., 119(6), 062001–11pp.
Abstract: The first observation of the decays Lambda(b)(0) -> chi(c1)pK(-) and Lambda(0)(b) -> chi(c2)pK(-) is reported using a data sample corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment in pp collisions at center-of-mass energies of 7 and 8 TeV The following ratios of branching fractions are measured: B(Lambda(0)(b) -> chi(c1)pK(-))/B(Lambda(0)(b) -> J/psi pK(-)) = 0.242 +/- 0.014 +/- 0.013 +/- 0.009, B(Lambda(0)(b) -> chi(c2)pK(-))/B(Lambda(0)(b) -> J/psi pK(-)) = 0.248 +/- 0.020 +/- 0.014 +/- 0.009, B(Lambda(0)(b) -> chi(c2)pK(-))/B(Lambda(0)(b) -> chi(c1)pK(-)) = 1.02 +/- 0.010 +/- 0.02 +/- 0.05, where the first uncertainty is statistical, the second systematic, and the third due to the uncertainty on the branching fractions of the x(c1) -> J/psi gamma and chi(c2) -> J/psi gamma decays. Using both decay modes, the mass of the Ab baryon is also measured to be m(Lambda b0) = 5619.44 +/- 0.28 +/- 0.26 MeV/c(2), where the first and second uncertainties are statistical and systematic, respectively.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Observation of the Doubly Charmed Baryon Xi(++)(cc). Phys. Rev. Lett., 119(11), 112001–10pp.
Abstract: A highly significant structure is observed in the Lambda K-+(c)-pi(+)pi(+) mass spectrum, where the Lambda(+)(c) baryon is reconstructed in the decay mode pK(-)pi(+). The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Xi(++)(cc). The difference between the masses of the Xi(++)(cc) and Lambda(+)(c) states is measured to be 1334.94 +/- 0.72(stat.) +/- 0.27(syst.) MeV/c(2), and the Xi(++)(cc) mass is then determined to be 3621.40 +/- 0.72(stat.) +/- 0.27(syst.) +/- 0.14(Lambda(+)(c)) MeV/c(2), where the last uncertainty is due to the limited knowledge of the Lambda(+)(c) mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb(-1), and confirmed in an additional sample of data collected at 8 TeV.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Measurement of B-s(0) and D-s(-) Meson Lifetimes. Phys. Rev. Lett., 119(10), 101801–10pp.
Abstract: We report on a measurement of the flavor-specific B-s(0) lifetime and of the D-s(-) lifetime using proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to 3.0 fb(-1) of integrated luminosity. Approximately 407 000 B-s(0) -> D-s(()*()) -> D-s(()*()-) mu+v(mu) decays are partially reconstructed in the K+K-pi(-)mu(+) final state. The B-s(0) and D-s(-) natural widths are determined using, as a reference, kinematically similar B-0 -> Dd(*)(-) mu+v(mu) decays reconstructed in the same final state. The resulting differences between widths of B-s(0) and B-0 mesons and of D-s(-) and D- mesons are Delta(Gamma)(B) = -0.0115 +/- 0.0053(stat) +/- 0.0041 (syst) ps(-1) and Delta(Gamma)(D) = 1.0131 +/- 0.0117(stat) +/- 0.0065(syst) ps(-1), respectively. Combined with the known B-0 and D- lifetimes, these yield the flavor-specific B-s(0) lifetime, tau(fs)(Bs0) = 1.547 +/- 0.013 (stat) +/- 0.010 (syst) +/- 0.004(tau(B)) ps and the D-s(-) lifetime, tau(Ds-) = 0.5064 +/- 0.0030(stat) +/- 0.0017(syst) +/- 0.0017(sys) +/- 0.0017(tau(D)). The last uncertainties originate from the limited knowledge of the B-0 and D- lifetimes. The results improve upon current determinations.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Search for Baryon-Number Violating Xi(0)(b) Oscillations. Phys. Rev. Lett., 119(18), 181807–9pp.
Abstract: A search for baryon-number violating Xi(0)(b) oscillations is performed with a sample of pp collision data recorded by the LHCb experiment, corresponding to an integrated luminosity of 3 fb(-1). The baryon number at the moment of production is identified by requiring that the Xi(0)(b) come from the decay of a resonance Xi(b)*(-) -> Xi(0)(b)pi(-) or Xi(b)'(-) -> Xi(0)(b)pi(-) and the baryon number at the moment of decay is identified from the final state using the decays Xi(0)(b) -> Xi(0)(c)pi(-) , Xi(+-)(c) -> pK(-)pi(+). No evidence of baryon-number violation is found, and an upper limit at the 95% confidence level is set on the oscillation rate of omega < 0.08 ps(-1), where. is the associated angular frequency.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). chi(c1) and chi(c2) Resonance Parameters with the Decays chi(c1,c2) -> J/psi mu(+)mu(-). Phys. Rev. Lett., 119(22), 221801–9pp.
Abstract: The decays chi(c1) -> J/psi mu(+)mu(-) and chi(c1) -> J/psi mu(+)mu(-) are observed and used to study the resonance parameters of the chi(c1) and chi(c2) mesons. The masses of these states are measured to be m(chi(c1)) = 3510.71 +/- 0.04(stat) +/- 0.09(syst) MeV and m(chi(c2)) = 3556.10 +/- 0.06(stat) +/- 0.11(syst) MeV, where the knowledge of the momentum scale for charged particles dominates the systematic uncertainty. The momentum-scale uncertainties largely cancel in the mass difference m(chi(c2)) – m(chi(c1)) = 45.39 +/- 0.07(stat) +/- 0.03(syst) MeV. The natural width of the chi(c2) meson is measured to be Gamma(chi(c2)) = 2.10 +/- 0.20(stat) +/- 0.02(syst) MeV. These results are in good agreement with and have comparable precision to the current world averages.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). First Observation of the Rare Purely Baryonic Decay B0 -> p p-bar. Phys. Rev. Lett., 119(23), 232001–10pp.
Abstract: The first observation of the decay of a B0 meson to a purely baryonic final state, B-0 -> p$(p)over-bar-$ , is reported. The proton-proton collision data sample used was collected with the LHCb experiment at center-of-mass energies of 7 and 8 TeV and corresponds to an integrated luminosity of 3.0 fb(-1). The branching fraction is determined to be B(B-0 -> p$(p)over-bar-$) = (1.25 +/- 0.27 +/- 0.18) x 10(-8), where the first uncertainty is statistical and the second systematic. The decay mode B-0 -> p$(p)over-bar-$ is the rarest decay of the B-0 meson observed to date. The decay B-s(0 )-> p$(p)over-bar-$ is also investigated. No signal is seen and the upper limit B(B-s(0) -> p$(p)over-bar-$) < 1.5 x 10(-8) at 90% confidence level is set on the branching fraction.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Observation of D-0 meson decays to pi(+) pi(-) mu(+) mu(-) and K+ K- mu(+) mu(-) final states. Phys. Rev. Lett., 119(18), 181805–10pp.
Abstract: The first observation of the D-0 -> pi(+) pi(-) mu(+) mu(-) and D-0 -> K+ K- mu(+) mu(-) decays is reported using a sample of proton-proton collisions collected by LHCb at a center-of-mass energy of 8 TeV, and corresponding to 2 fb(-1) of integrated luminosity. The corresponding branching fractions are measured using as normalization the decay D-0 -> K- pi(+) [mu(+) mu(-)](rho 0/omega), where the two muons are consistent with coming from the decay of a rho(0) or omega meson. The results are B(D-0 -> pi(+) pi(-) mu(+) mu(-)) = (9.64 +/- 0.48 +/- 0.51 +/- 0.97) x 10(-7) and B(D-0 -> K+ K- mu(+) mu(-)) = (1.54 +/- 0.27 +/- 0.09 +/- 0.16) x 10(-7), where the uncertainties are statistical, systematic, and due to the limited knowledge of the normalization branching fraction. The dependence of the branching fraction on the dimuon mass is also investigated.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., et al. (2017). First Experimental Study of Photon Polarization in Radiative B-s(0) Decays. Phys. Rev. Lett., 118(2), 021801–9pp.
Abstract: The polarization of photons produced in radiative B-s(0) decays is studied for the first time. The data are recorded by the LHCb experiment in pp collisions corresponding to an integrated luminosity of 3 fb(-1) at center-of-mass energies of 7 and 8 TeV. A time-dependent analysis of the B-s(0) ->phi gamma decay rate is conducted to determine the parameter A(Delta), which is related to the ratio of right-over left-handed photon polarization amplitudes in b -> s gamma transitions. A value of A(Delta) = -0.98(-0.52)(-0.20)(+0.46)(+0.23) is measured. This result is consistent with the standard model prediction within 2 standard deviations.
|
|
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., & Sanchez Mayordomo, C. (2017). Observation of J/psi phi Structures Consistent with Exotic States from Amplitude Analysis of B+ -> J/psi phi K+ Decays. Phys. Rev. Lett., 118(2), 022003–10pp.
Abstract: The first full amplitude analysis of B+ -> J/psi phi K+ with J/psi -> mu(+)mu(-), phi -> K+K- decays is performed with a data sample of 3 fb(-1) of pp collision data collected at root s = 7 and 8 TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into phi K+ , and four J/psi phi structures are observed, each with significance over 5 standard deviations. The quantum numbers of these structures are determined with significance of at least 4 standard deviations. The lightest has mass consistent with, but width much larger than, previous measurements of the claimed X(4140) state.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., et al. (2017). Observation of B-c(+) -> (DK+)-K-0 Decays. Phys. Rev. Lett., 118(11), 111803–9pp.
Abstract: Using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LHCb detector at center-of-mass energies of 7 and 8 TeV, the B-c(+) -> (DK+)-K-0 decay is observed with a statistical significance of 5.1 standard deviations. By normalizing to B-c(+) -> (D) over bar (0)pi(+) decays, a measurement of the branching fraction multiplied by the production rates for B-c(+) relative to B+ mesons in the LHCb acceptance is obtained, R-D0K = (f(c)/f(u)) x B(B-c(+) -> (DK+)-K-0) = (9.3(-2.5)(+2.8) +/- 0.6) x 10(-7), where the first uncertainty is statistical and the second is systematic. This decay is expected to proceed predominantly through weak annihilation and penguin amplitudes, and is the first B-c(+) decay of this nature to be observed.
|
|