LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Measurement of Angular and CP Asymmetries in D-0 -> pi(+) pi(-) mu(+) mu(-) and D-0 -> K+ K- mu(+) mu(-) Decays. Phys. Rev. Lett., 121(9), 091801–10pp.
Abstract: The first measurements of the forward-backward asymmetry of the dimuon pair (A(FB)), the triple-product asymmetry (A(2 phi)), and the charge-parity-conjugation asymmetry (A(CP)), in D-0 -> pi(+) pi(-) mu(+) mu(-) and -> D-0 -> K+ K- mu(+) mu(-) decays are reported. They are performed using data from proton-proton collisions collected with the LHCb experiment from 2011 to 2016, corresponding to a total integrated luminosity of 5 fb(-1). The asymmetries are measured to be A(FB) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (3.3 +/- 3.7 +/- 0.6)%, A(2 phi) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (-0.6 +/- 3.7 +/- 0.6)%, A(CP) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (4.9 +/- 3.8 +/- 0.7)%, A(FB) (D-0 -> K+ K- mu(+) mu(-)) = (0 +/- 11 +/- 2 +/-)%, A(2 phi) (D-0 -> K+ K- mu(+) mu(-)) = (9 +/- 11 +/- 1)%, A(CP) (D-0 -> K+ K- mu(+) mu(-)) = (0 +/- 11 +/- 2)% where the first uncertainty is statistical and the second systematic. The asymmetries are also measured as a function of the dimuon invariant mass. The results are consistent with the standard model predictions.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Measurement of the Omega(0)(c) Baryon Lifetime. Phys. Rev. Lett., 121(9), 092003–10pp.
Abstract: We report a measurement of the lifetime of the Omega(0)(c) baryon using proton-proton collision data at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb(-1) collected by the LHCb experiment. The sample consists of about 1000 Omega(-)(b) -> Omega(0)(c)mu(-)nu X-mu signal decays, where the Omega(0)(c) baryon is detected in the pK(-)K(-)pi(+) thorn final state and X represents possible additional undetected particles in the decay. The Omega(0)(c) lifetime is measured to be tau(Omega c0) = 268 +/- 24 +/- 10 +/- 2 fs, where the uncertainties are statistical, systematic, and from the uncertainty in the D+ lifetime, respectively. This value is nearly four times larger than, and inconsistent with, the current world-average value.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). First Observation of the Doubly Charmed Baryon Decay Xi(++)(cc) -> Xi(+)(c)pi(+). Phys. Rev. Lett., 121(16), 162002–10pp.
Abstract: The doubly charmed baryon decay Xi(++)(cc) -> Xi(+)(c)pi(+) is observed for the first time, with a statistical significance of 5.9 sigma, confirming a recent observation of the baryon in the Lambda K-+(c)-pi(+)pi(+) final state. The data sample used corresponds to an integrated luminosity of 1.7 fb(-1), collected by the LHCb experiment in pp collisions at a center-of-mass energy of 13 TeV. The Xi(++)(cc) mass is measured to be 3620.6 +/- 1.5(stat) +/- 0.4(syst) +/- 0.3(Xi(+)(c)) MeV/c(2) and is consistent with the previous result. The ratio of branching fractions between the decay modes is measured to be [B(Xi(++)(cc) -> Xi(+)(c)pi(+)) x B(Xi(+)(c) -> pK(-)pi(+))]/[B(Xi(++)(cc) -> Lambda K-+(c)-pi(+)pi(+)) x B(Lambda(+)(c) -> pK(-)pi(+))] = 0.035 +/- 0.009 (stat) +/- 0.003 (syst).
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Measurement of Antiproton Production in p-He Collisions at root S-NN=110 GeV. Phys. Rev. Lett., 121(22), 222001–10pp.
Abstract: The cross section for prompt antiproton production in collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of 0.5 nb(-1). The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between 12 and 110 GeV/c, represent the first direct determination of the antiproton production cross section in p-He collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Search for Dark Photons Produced in 13 TeV pp Collisions. Phys. Rev. Lett., 120(6), 061801–11pp.
Abstract: Searches are performed for both promptlike and long-lived dark photons, A', produced in proton-proton collisions at a center-of-mass energy of 13 TeV, using A' -> mu(+)mu(-) decays and a data sample corresponding to an integrated luminosity of 1.6 fb(-1) collected with the LHCb detector. The promptlike A' search covers the mass range from near the dimuon threshold up to 70 GeV, while the long-lived A' search is restricted to the low-mass region 214 < mo(A') < 350 MeV. No evidence for a signal is found, and 90% confidence level exclusion limits are placed on the gamma-A' kinetic-mixing strength. The constraints placed on promptlike dark photons are the most stringent to date for the mass range 10.6 < m(A') < 70 GeV, and are comparable to the best existing limits for m(A') < 0.5 GeV. The search for long-lived dark photons is the first to achieve sensitivity using a displaced-vertex signature.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Measurement of the Ratio of Branching Fractions B(B-c(+) -> J/psi tau(+)nu(tau))/B(B-c(+) -> J/psi mu(+)nu(mu)). Phys. Rev. Lett., 120(12), 121801–10pp.
Abstract: A measurement is reported of the ratio of branching fractions R(J/psi) = B(B-c(+) -> J/psi tau(+)nu(tau))/B(B-c(+) -> J/psi mu(+)nu(mu)), where the tau(+) lepton is identified in the decay mode tthorn tau(+) -> mu(+)nu(mu)(nu) over bar (tau). This analysis uses a sample of proton-proton collision data corresponding to 3.0 fb(-1) of integrated luminosity recorded with the LHCb experiment at center-of-mass energies of 7 and 8 TeV. A signal is found for the decay B-c(+) -> J/psi tau(+)nu(tau) at a significance of 3 standard deviations corrected for systematic uncertainty, and the ratio of the branching fractions is measured to be R(J/psi) = 0.71 +/- 0.17(stat) +/- 0.18(syst). This result lies within 2 standard deviations above the range of central values currently predicted by the standard model.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Measurement of the Ratio of the B-0 -> D*(-)iota(+)v(iota) and B-0 -> D*(-) mu(+)v(mu) Branching Fractions Using Three-Prong tau-Lepton Decays. Phys. Rev. Lett., 120(17), 171802–11pp.
Abstract: The ratio of branching fractions R(D*(-)) equivalent to B(B-0 -> D*(-) iota(+)v(iota))/B(B-0 -> D*(-) mu+ v(mu)) is measured using a data sample of proton-proton collisions collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). For the first time, R(D*-) is determined using the iota-lepton decays with three charged pions in the final state. The B-0 -> D*(-) iota+ v(iota) yield is normalized to that of the B-0 -> D*(-) pi(+) pi(-) pi(+) mode, providing a measurement B-0 -> D*(-) iota+ v(iota) / B(B-0 -> D*(-) pi(+) pi(-) pi(+)) = 1.97 +/- 0.13 +/- 0.18, where the first uncertainty is statistical and the second systematic. The value of (B-0 -> D*(-) iota+ v(iota)) = (1.42 +/- 0.094 +/- 0.129 +/- 0.054)% is obtained, where the third uncertainty is due to the limited knowledge of the branching fraction of the normalization mode. Using the well-measured branching fraction of the B-0 -> D*(-) mu+ v(mu) decay, a value of R(D*(-)) = 0.291 +/- 0.019 +/- 0.026 +/- 0.013 is established, where the third uncertainty is due to the limited knowledge of the branching fractions of the normalization and B-0 -> D*(-) mu+ v(mu) modes. This measurement is in agreement with the standard model prediction and with previous results.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Evidence for the Rare Decay Sigma(+) -> p mu(+)mu(-). Phys. Rev. Lett., 120(22), 221803–10pp.
Abstract: A search for the rare decay Sigma(+) -> p mu(+)mu(-) is performed using pp collision data recorded by the LHCb experiment at center-of-mass energies root s = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). An excess of events is observed with respect to the background expectation, with a signal significance of 4.1 standard deviations. No significant structure is observed in the dimuon invariant mass distribution, in contrast with a previous result from the HyperCP experiment. The measured Sigma(+) -> p mu(+)mu(-) branching fraction is (2.2(-1.3)(+1.8)) x 10(-8), where statistical and systematic uncertainties are included, which is consistent with the standard model prediction.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Amplitude Analysis of the Decay (B)over-bar(0 )-> K-S(0)pi(+)pi(- )and First Observation of the CP Asymmetry in (B)over-bar(0 )-> K* (892)(-)pi(+). Phys. Rev. Lett., 120(26), 261801–10pp.
Abstract: The time-integrated untagged Dalitz plot of the three-body hadronic charmless decay (B) over bar (0 )-> K-S(0)pi(+)pi(- ) is studied using a pp collision data sample recorded with the LHCb detector, corresponding to an integrated luminosity of 3.0 fb(-1). The decay amplitude is described with an isobar model. Relative contributions of the isobar amplitudes to the (B) over bar (0 )-> K-S(0)pi(+)pi(- ) decay branching fraction and CP asymmetries of the flavor-specific amplitudes are measured. The CP asymmetry between the conjugate (B) over bar (0 )-> K* (892)(-)pi(+) and (B) over bar (0 )-> K* (892)(-)pi(+) decay rates is determined to be -0.308 +/- 0.062.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). First Observation of a Baryonic B-s(0) Decay. Phys. Rev. Lett., 119(4), 041802–10pp.
Abstract: We report the first observation of a baryonic B-s(0) decay, B-s(0). p (Lambda) over barK(-), using proton-proton collision data recorded by the LHCb experiment at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3.0 fb(-1). The branching fraction is measured to be B(B-s(0) -> p (Lambda) over bar K-)+ B(B-s(0) -> p (Lambda) over bar K+) [5.46 +/- 0.61 +/- 0.57 +/- 0.50(B) +/- 0.32(f(s)/(d))] x 10(-6), where the first uncertainty is statistical and the second systematic, the third uncertainty accounts for the experimental uncertainty on the branching fraction of the B-0 -> p (Lambda) over bar pi(-) decay used for normalization, and the fourth uncertainty relates to the knowledge of the ratio of b-quark hadronization probabilities f(s)/f(d).
|