|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). (U)pdated measurement of decay-time-dependent CP asymmetries in D-0 -> K+ K- and D-0 -> pi(+)pi(-) decays. Phys. Rev. D, 101(1), 012005–12pp.
Abstract: A search for decay-time-dependent charge-parity (CP) asymmetry in D-0 -> K+ K- and D-0 -> pi(+)pi(-) eff decays is performed at the LHCb experiment using proton-proton collision data recorded at a center-of-mass energy of 13 TeV, and corresponding to an integrated luminosity of 5.4 fb(-1). The D-0 mesons are required to originate from semileptonic decays of b hadrons, such that the charge of the muon identifies the flavor of the neutral D meson at production. The asymmetries in the effective decay widths of D-0 and (D) over bar (0) mesons are determined to be A(Gamma)(K+ K-) = (-4.3 +/- 3.6 +/- 0.5) x 10(-4) and A(Gamma) (K+ K- ) = (2.2 +/- 7.0 +/- 0.8) x 10(-4), where the uncertainties are statistical and systematic, respectively. The results are consistent with CP symmetry and, when combined with previous LHCb results, yield A(Gamma) (K+ K-) = (-4.4 +/- 2.3 +/- 0.6) x 10(-4) and A(Gamma) (pi(+)pi(-))= (2.5 +/- 4.3 +/- 0.7) x 10(-4).
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). A measurement of the CP asymmetry difference between Lambda(+)(C) -> pK(-)K(+) and p pi(-)pi(+) decays. J. High Energy Phys., 03(3), 182–21pp.
Abstract: The difference between the CP asymmetries in the decays Lambda(+)(C) -> pK(-)K(+) and Lambda(+)(C) -> p pi(-)pi(+) is presented. Proton-proton collision data taken at centre-of-mass energies of 7 and 8 TeV collected by the LHCb detector in 2011 and 2012 are used, corresponding to an integrated luminosity of 3 fb(-1). The Lambda(+)(C) candidates are reconstructed as part of the Lambda(0)(b) -> Lambda(+)(c)mu X- decay chain. In order to maximize the cancellation of production and detection asymmetries in the difference, the final-state kinematic distributions of the two samples are aligned by applying phase-space-dependent weights to the Lambda(+)(C) -> pK(-)K(+) sample. This alters the definition of the integrated CP asymmetry to A(CP)(wgt)(p pi(-)pi(+)). Both samples are corrected for reconstruction and selection efficiencies across the five-dimensional Lambda(+)(C) decay phase space. The difference in CP asymmetries is found to be Delta A(CP)(wgt) = A(CP)(pK(-)K(+)) – A(CP)(wgt)(p pi(-)pi(+)) = (0.30 +/- 0.91 +/- 0.61) %, where the first uncertainty is statistical and the second is systematic.
|
|
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2016). A new algorithm for identifying the flavour of B-s(0) mesons at LHCb. J. Instrum., 11, P05010–23pp.
Abstract: A new algorithm for the determination of the initial flavour of B-s(0) mesons is presented. The algorithm is based on two neural networks and exploits the b hadron production mechanism at a hadron collider. The first network is trained to select charged kaons produced in association with the B-s(0) meson. The second network combines the kaon charges to assign the B-s(0) flavour and estimates the probability of a wrong assignment. The algorithm is calibrated using data corresponding to an integrated luminosity of 3 fb(-1) collected by the LHCb experiment in proton-proton collisions at 7 and 8 TeV centre-of-mass energies. The calibration is performed in two ways: by resolving the B-s(0)-B-s(0) flavour oscillations in B-s(0) -> D-s(-)pi(+) decays, and by analysing flavour-specific B-s2*(5840)(0) -> B+K- decays. The tagging power measured in B-s(0) -> D-s(-)pi(+) decays is found to be (1.80 +/- 0.19 ( stat) +/- 0.18 (syst))%, which is an improvement of about 50% compared to a similar algorithm previously used in the LHCb experiment.
|
|
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2016). A precise measurement of the B-0 meson oscillation frequency. Eur. Phys. J. C, 76(7), 412–14pp.
Abstract: The oscillation frequency, Delta m(d), of B-0 mesons is measured using semileptonic decays with a D- or D*(-) meson in the final state. The data sample corresponds to 3.0 fb(-1) of pp collisions, collected by the LHCb experiment at centre-of-mass energies root s = 7 and 8 TeV. A combination of the two decay modes gives Delta m(d) = (505.0 +/- 2.1 +/- 1.0) ns(-1), where the first uncertainty is statistical and the second is systematic. This is the most precise single measurement of this parameter. It is consistent with the current world average and has similar precision.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). A search for Xi(++)(cc) -> D(+)pK(-)pi(+) decays. J. High Energy Phys., 10(10), 124–21pp.
Abstract: A search for the Xi(++)(cc) baryon through the Xi(++)(cc) -> D(+)pK(-)pi(+) decay is performed with a data sample corresponding to an integrated luminosity of 1.7 fb(-1) recorded by the LHCb experiment in pp collisions at a centre-of-mass energy of 13 TeV. No significant signal is observed in the mass range from the kinematic threshold of the decay to 3800 MeV/c(2). An upper limit is set on the ratio of branching fractions R = B(Xi(++)(cc) -> D(+)pK(-)pi(+))/B(Xi(++)(cc) -> A(c)(+) K- pi(+)pi(+)) with R < 1.7 (2.1) x 10(-2) at the 90% (95%) confidence level at the known mass of the Xi(++)(cc) state.
|
|
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., & Sanchez Mayordomo, C. (2017). Amplitude analysis of B+ -> J/psi phi K+ decays. Phys. Rev. D, 95(1), 012002–28pp.
Abstract: The first full amplitude analysis of B+ -> J/psi phi K+ with J/psi -> mu(+)mu(-), phi -> K+K- decays is performed with a data sample of 3 fb(-1) of pp collision data collected at root s = 7 and 8 TeV with the LHCb detector. The data cannot be described by a model that contains only excited kaon states decaying into phi K+, and four J/psi phi structures are observed, each with significance over 5 standard deviations. The quantum numbers of these structures are determined with significance of at least 4 standard deviations. The lightest has mass consistent with, but width much larger than, previous measurements of the claimed X(4140) state. The model includes significant contributions from a number of expected kaon excitations, including the first observation of the K*(1680)+ -> phi K+ transition.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., et al. (2016). Amplitude analysis of B- -> D+pi(-)pi(-) decays. Phys. Rev. D, 94(7), 072001–23pp.
Abstract: The Dalitz plot analysis technique is used to study the resonant substructures of B- -> D+pi(-)pi(-) decays in a data sample corresponding to 3.0 fb(-1) of pp collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high D+pi(-) mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the D+pi(-) S wave together with virtual contributions from the D*(2007)(0) and B*(0) states, and components corresponding to the D-2*(2460)(0), D-1*(2680)(0), D-3*(2760)(0) and D-2*(3000)(0) resonances. The masses and widths of these resonances are determined together with the branching fractions for their production in B- -> D+pi(-)pi(-) decays. The D+pi(-) S wave has phase motion consistent with that expected due to the presence of the D-0*(2400)(0) state. These results constitute the first observations of the D-3*(2760)(0) and D-2*(3000)(0) resonances, with significances of 10 sigma and 6.6 sigma, respectively.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude Analysis of B-+/- -> pi(K+K-)-K-+/- Decays. Phys. Rev. Lett., 123(23), 231802–11pp.
Abstract: The first amplitude analysis of the B-+/- -> pi(K+K-)-K-+/- decay is reported based on a data sample corresponding to an integrated luminosity of 3.0 fb(-1) of pp collisions recorded in 2011 and 2012 with the LHCb detector. The data are found to be best described by a coherent sum of five resonant structures plus a nonresonant component and a contribution from pi pi <-> KK S-wave rescattering. The dominant contributions in the pi(+/-) K(-/+ )and K+ K- systems are the nonresonant and the B-+/- -> rho(1450)(0)pi(+/-) amplitudes, respectively, with fit fractions around 30%. For the rescattering contribution, a sizable fit fraction is observed. This component has the largest CP asymmetry reported to date for a single amplitude of (-66 +/- 4 +/- 2)%, where the first uncertainty is statistical and the second systematic. No significant CP violation is observed in the other contributions.
|
|
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Amplitude analysis of B-0 -> (D)over-bar0K(+)pi(-) decays. Phys. Rev. D, 92(1), 012012–24pp.
Abstract: The Dalitz plot distribution of B-0 -> (D) over bar K-0(+)pi(-) decays is studied using a data sample corresponding to 3.0 fb(-1) of pp collision data recorded by the LHCb experiment during 2011 and 2012. The data are described by an amplitude model that contains contributions from intermediate K* (892)(0), K*(1410)(0), K-2*(1430)(0) and D-2(*)(2460)(-) resonances. The model also contains components to describe broad structures, including the K-0(*)(1430)(0) and D-0(*)(2400)(-) resonances, in the K pi S-wave and the D pi S-and P-waves. The masses and widths of the D-0*(2400)(-) and D-2(*)(2460)(-) resonances are measured, as are the complex amplitudes and fit fractions for all components included in the amplitude model. The model obtained will be an integral part of a future determination of the angle gamma of the Cabibbo-Kobayashi-Maskawa quark mixing matrix using B-0 -> DK+pi(-) decays.
|
|
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude analysis of B-s(0) -> K-S(0) K-+/-pi(-/+) decays. J. High Energy Phys., 06(6), 114–28pp.
Abstract: The first untagged decay-time-integrated amplitude analysis of B 0 s ! K 0 S K decays is performed using a sample corresponding to 3: 0 fb of pp collision data recorded with the LHCb detector during 2011 and 2012. The data are described with an amplitude model that contains contributions from the intermediate resonances K 9892) 0;+, K 2 91430) 0;+ and K 0 91430) 0;+, and their charge conjugates. Measurements of the branching fractions of the decay modes B 0 s ! K 9892) K and B 0 s ! K 9892) 0 K 0 are in agreement with, and more precise than, previous results. The decays B 0 s ! K 0 91430) K and B 0 s ! K 0 91430) 0 K 0 are observed for the fi rst time, each with signi fi cance over 10 standard deviations.
|
|