LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Identification of beauty and charm quark jets at LHCb. J. Instrum., 10, P06013–29pp.
Abstract: Identification of jets originating from beauty and charm quarks is important for measuring Standard Model processes and for searching for new physics. The performance of algorithms developed to select b- and c-quark jets is measured using data recorded by LHCb from proton-proton collisions at root s = 7TeV in 2011 and at root s = 8TeV in 2012. The efficiency for identifying a b (c) jet is about 65%(25%) with a probability for misidentifying a light-parton jet of 0.3% for jets with transverse momentum pT > 20GeV and pseudorapidity 2 : 2 < eta < 4.2. The dependence of the performance on the pT and eta of the jet is also measured.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Improved limit on the branching fraction of the rare decay K-S(0) -> mu(+)mu(-). Eur. Phys. J. C, 77(10), 678–12pp.
Abstract: A search for the decay K-S(0) -> mu+ mu- is performed, based on a data sample of proton- proton collisions corresponding to an integrated luminosity of 3 fb(-1), collected by the LHCb experiment at centre-of- mass energies of 7 and 8 TeV. The observed yield is consistent with the background- only hypothesis, yielding a limit on the branching fraction of B( K-S(0) -> mu(+)mu(-)) < 0.8 (1.0) x 10(-9) at 90% ( 95%) confidence level. This result improves the previous upper limit on the branching fraction by an order of magnitude.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Isospin Amplitudes in Lambda(0)(b) -> J/psi Lambda (Sigma(0)) and Xi(0)(b)-> J/psi Xi(0) (Lambda) Decays. Phys. Rev. Lett., 124(11), 111802–11pp.
Abstract: Ratios of isospin amplitudes in hadron decays are a useful probe of the interplay between weak and strong interactions and allow searches for physics beyond the standard model. We present the first results on isospin amplitudes in b-baryon decays, using data corresponding to an integrated luminosity of 8.5 fb(-1), collected with the LHCb detector in pp collisions at center of mass energies of 7, 8, and 13 TeV. The isospin amplitude ratio vertical bar A(1) (Delta(0)(b) -> J/psi(Sigma(0)) /A(0) (Delta(0)(b) -> J/psi Lambda)vertical bar, where the subscript on A indicates the final-state isospin, is measured to be less than 1/21.8 at 95% confidence level. The Cabibbo suppressed Xi(0)(b) -> J/psi Lambda decay is observed for the first time, allowing for the measurement vertical bar A(0) (Xi(0)(b) -> J/psi Lambda) / A(1/2 )(Xi(0)(b) -> J/psi Xi(0))vertical bar = 0.37 +/- 0.06 +/- 0.02, where the uncertainties are statistical and systematic, respectively.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). LHCb detector performance. Int. J. Mod. Phys. A, 30(7), 1530022–73pp.
Abstract: The LHCb detector is a forward spectrometer at the Large Hadron Collider (LHC) at CERN. The experiment is designed for precision measurements of CP violation and rare decays of beauty and charm hadrons. In this paper the performance of the various LHCb sub-detectors and the trigger system are described, using data taken from 2010 to 2012. It is shown that the design criteria of the experiment have been met. The excellent performance of the detector has allowed the LHCb collaboration to publish a wide range of physics results, demonstrating LHCb's unique role, both as a heavy flavour experiment and as a general purpose detector in the forward region.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Measurement of Angular and CP Asymmetries in D-0 -> pi(+) pi(-) mu(+) mu(-) and D-0 -> K+ K- mu(+) mu(-) Decays. Phys. Rev. Lett., 121(9), 091801–10pp.
Abstract: The first measurements of the forward-backward asymmetry of the dimuon pair (A(FB)), the triple-product asymmetry (A(2 phi)), and the charge-parity-conjugation asymmetry (A(CP)), in D-0 -> pi(+) pi(-) mu(+) mu(-) and -> D-0 -> K+ K- mu(+) mu(-) decays are reported. They are performed using data from proton-proton collisions collected with the LHCb experiment from 2011 to 2016, corresponding to a total integrated luminosity of 5 fb(-1). The asymmetries are measured to be A(FB) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (3.3 +/- 3.7 +/- 0.6)%, A(2 phi) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (-0.6 +/- 3.7 +/- 0.6)%, A(CP) (D-0 -> pi(+) pi(-) mu(+) mu(-)) = (4.9 +/- 3.8 +/- 0.7)%, A(FB) (D-0 -> K+ K- mu(+) mu(-)) = (0 +/- 11 +/- 2 +/-)%, A(2 phi) (D-0 -> K+ K- mu(+) mu(-)) = (9 +/- 11 +/- 1)%, A(CP) (D-0 -> K+ K- mu(+) mu(-)) = (0 +/- 11 +/- 2)% where the first uncertainty is statistical and the second systematic. The asymmetries are also measured as a function of the dimuon invariant mass. The results are consistent with the standard model predictions.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Measurement of Antiproton Production in p-He Collisions at root S-NN=110 GeV. Phys. Rev. Lett., 121(22), 222001–10pp.
Abstract: The cross section for prompt antiproton production in collisions of protons with an energy of 6.5 TeV incident on helium nuclei at rest is measured with the LHCb experiment from a data set corresponding to an integrated luminosity of 0.5 nb(-1). The target is provided by injecting helium gas into the LHC beam line at the LHCb interaction point. The reported results, covering antiproton momenta between 12 and 110 GeV/c, represent the first direct determination of the antiproton production cross section in p-He collisions, and impact the interpretation of recent results on antiproton cosmic rays from space-borne experiments.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of b hadron fractions in 13 TeV pp collisions. Phys. Rev. D, 100(3), 031102–11pp.
Abstract: The production fractions of (B) over bar (0)(s) and Lambda(0)(b) hadrons, normalized to the sum of B- and (B) over bar (0) fractions, arc measured in 13 TeV pp collisions using data collected by the LHCb experiment, corresponding to an integrated luminosity of 1.67 fb(-1). These ratios, averaged over the b hadron transverse momenta from 4 to 25 GeV and pseudorapidity from 2 to 5, are 0.122 +/- 0.006 for (B) over bar (0)(s) and 0.259 +/- 0.018 for Lambda(0)(b) where the uncertainties arise from both statistical and systematic sources. The Lambda(0)(b) ratio depends strongly on transverse momentum, while the (B) over bar (0)(s) ratio shows a mild dependence. Neither ratio shows variations with pseudorapidity. The measurements are made using semileptonic decays to minimize theoretical uncertainties. In addition, the ratio of D+ to D-0 mesons produced in the sum of (B) over bar (0) and B- semileptonic decays is determined as 0.359 +/- 0.006 +/- 0.009, where the uncertainties are statistical and systematic.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of B+, B-0 and Lambda(0)(b) production in pPb collisions at, root(NN)-N-s=8.16 TeV. Phys. Rev. D, 99(5), 052011–21pp.
Abstract: The production of B+, B-0 and Lambda(0)(b), hadrons is studied in proton-lead collisions at a center-of-mass energy per nucleon pair of root(NN)-N-s T = 8.16 TeV recorded with the LHCb detector at the LHC. The measurement uses a dataset corresponding to an integrated luminosity of 12.2 +/- 0.3 nb(-1) for the case where the proton beam is projected into the LHCb detector (corresponding to measuring hadron production at positive rapidity) and 18.6 +/- 0.5 nb(-1) for the lead beam projected into the LHCb detector (corresponding to measuring hadron production at negative rapidity). Double-differential cross sections are measured and used to determine forward-backward ratios and nuclear modification factors, which directly probe nuclear effects in the production of beauty hadrons. The double-differential cross sections are measured as a function of the beauty-hadron transverse momentum and rapidity in the nucleon-nucleon center-of-mass frame. Forward-to-backward cross section ratios and nuclear modification factors indicate a significant nuclear suppression at positive rapidity. The ratio of Lambda(0)(b), over B-0 production cross sections is reported and is consistent with the corresponding measurement in pp collisions.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., et al. (2017). Measurement of B-0, B-s(0), B(+)and lambda(0)(b) production asymmetries in 7 and 8 TeV proton-proton collisions. Phys. Lett. B, 774, 139–158.
Abstract: The B-0, B-s(0), B+ and lambda(0)(b) hadron production asymmetries are measured using a data sample corresponding to an integrated luminosity of 3.0 fbc(-1), collected by the LHCb experiment in proton-proton collisions at centre-of-mass energies of 7 and 8 TeV. The measurements are performed as a function of transverse momentum and rapidity of the b hadrons within the LHCb detector acceptance. The overall production asymmetries, integrated over transverse momentum and rapidity, are also determined.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of B-c(+) Production in Proton-Proton Collisions at root s=8 TeV. Phys. Rev. Lett., 114(13), 132001–9pp.
Abstract: Production of B-c(+) mesons in proton-proton collisions at a center-of-mass energy of 8 TeV is studied with data corresponding to an integrated luminosity of 2.0 fb(-1) recorded by the LHCb experiment. The ratio of production cross sections times branching fractions between the B_c. J/psi pi(+) and B+ -> J/psi K+ decays is measured as a function of transverse momentum and rapidity in the regions 0 < p(T) < 20 GeV/c and 2.0 < y < 4.5. The ratio in this kinematic range is measured to be (0.683 +/- 0.018 +/- 0.009)%, where the first uncertainty is statistical and the second systematic.
|