LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Amplitude analysis of the B+ -> D+D-K+ decay. Phys. Rev. D, 102(11), 112003–32pp.
Abstract: Results are reported from an amplitude analysis of the B+ -> D+D-K+ decay. The analysis is carried out using LHCb proton-proton collision data taken at root s = 7, 8, and 13 TeV, corresponding to a total integrated luminosity of 9 fb(-1). In order to obtain a good description of the data, it is found to be necessary to include new spin-0 and spin-1 resonances in the D-K+ channel with masses around 2.9 GeV/c(2), and a new spin-0 charmonium resonance in proximity to the spin-2 chi(c2)(3930) state.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Amplitude analysis of the B+ -> pi(+)pi(+)pi(-) decay. Phys. Rev. D, 101(1), 012006–46pp.
Abstract: The results of an amplitude analysis of the charmless three-body decay B+ -> pi(+)pi(+)pi(-) , in which CP-violation effects are taken into account, are reported. The analysis is based on a data sample corresponding to an integrated luminosity of 3 fb(-1) of pp collisions recorded with the LHCb detector. The most challenging aspect of the analysis is the description of the behavior of the pi(+)pi(-) S-wave contribution, which is achieved by using three complementary approaches based on the isobar model, the K-matrix formalism, and a quasi-model-independent procedure. Additional resonant contributions for all three methods are described using a common isobar model, and include the rho(770)(0), omega(782)(0) and rho(1450)(0) resonances in the pi(+)pi(-) P-wave, the f(2) (1270) resonance in the pi(+)pi D- -wave, and the rho(3) (1690)(0) resonance in the pi(+)pi(-) F-wave. Significant CP-violation effects are observed in both S- and D-waves, as well as in the interference between the S- and P-waves. The results from all three approaches agree and provide new insight into the dynamics and the origin of CP-violation effects in B+ -> pi(+)pi(+)pi(-) decays.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Amplitude analysis of the B0 (s)! K0K0 decays and measurement of the branching fraction of the B0! K0K0 decay. J. High Energy Phys., 07(7), 032–31pp.
Abstract: The B0 K0K0 and B0 s K0K0 decays are studied using proton-proton collision data corresponding to an integrated luminosity of 3 fb. An untagged and timeintegrated amplitude analysis of B0 (s) (K+)(K) decays in two-body invariant mass regions of 150MeV/c2 around the K0 mass is performed. A stronger longitudinal polarisation fraction in the B0 K0K0 decay, fL = 0 : 724 0 : 051 (stat) 0 : 016 (syst), is observed as compared to fL = 0 : 240 0 : 031 (stat) 0 : 025 (syst) in the B0 s K0K0 decay. The ratio of branching fractions of the two decays is measured and used to determine B (B0 K0K0) = (8 : 0 0 : 9 (stat) 0 : 4 (syst)) x 10(-7).
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Amplitude Analysis of the Decay (B)over-bar(0 )-> K-S(0)pi(+)pi(- )and First Observation of the CP Asymmetry in (B)over-bar(0 )-> K* (892)(-)pi(+). Phys. Rev. Lett., 120(26), 261801–10pp.
Abstract: The time-integrated untagged Dalitz plot of the three-body hadronic charmless decay (B) over bar (0 )-> K-S(0)pi(+)pi(- ) is studied using a pp collision data sample recorded with the LHCb detector, corresponding to an integrated luminosity of 3.0 fb(-1). The decay amplitude is described with an isobar model. Relative contributions of the isobar amplitudes to the (B) over bar (0 )-> K-S(0)pi(+)pi(- ) decay branching fraction and CP asymmetries of the flavor-specific amplitudes are measured. The CP asymmetry between the conjugate (B) over bar (0 )-> K* (892)(-)pi(+) and (B) over bar (0 )-> K* (892)(-)pi(+) decay rates is determined to be -0.308 +/- 0.062.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Angular analysis and differential branching fraction of the decay B-s(0) -> phi mu(+)mu(-). J. High Energy Phys., 09(9), 179–35pp.
Abstract: An angular analysis and a measurement of the differential branching fraction of the decay B-s(0) -> phi mu(+)mu(-) are presented, using data corresponding to an integrated luminosity of 3.0 fb(-1) of pp collisions recorded by the LHCb experiment at root s = 7 and 8 TeV. Measurements are reported as a function of q(2), the square of the dimuon invariant mass and results of the angular analysis are found to be consistent with the Standard Model. In the range 1 < q(2) < 6 GeV2/c(4), where precise theoretical calculations are available, the differential branching fraction is found to be more than 3 sigma below the Standard Model predictions.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2014). Angular analysis of charged and neutral B -> K mu(+) mu(-) decays. J. High Energy Phys., 05(5), 082–25pp.
Abstract: The angular distributions of the rare decays B+ -> K+mu(+)mu(-) and B-0 -> K-S(0)mu(+)mu(-) are studied with data corresponding to 3 fb(-1) of integrated luminosity, collected in proton-proton collisions at 7 and 8 TeV centre-of-mass energies with the LHCb detector. The angular distribution is described by two parameters, F-H and the forward-backward asymmetry of the dimuon system A(FB), which are determined in bins of the dimuon mass squared. The parameter F-H is a measure of the contribution from (pseudo)scalar and tensor amplitudes to the decay width. The measurements of A(FB) and F-H reported here are the most precise to date and are compatible with predictions from the Standard Model.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Angular analysis of the B-0 -> K*(0) e(+) e(-) decay in the low-q(2) region. J. High Energy Phys., 04(4), 064–23pp.
Abstract: An angular analysis of the B-0 -> K(*0)e(+) e(-) decay is performed using a data sample, corresponding to an integrated luminosity of 3.0 fb(-1), collected by the LHCb experiment in pp collisions at centre-of-mass energies of 7 and 8 TeV during 2011 and 2012. For the first time several observables are measured in the dielectron mass squared (q(2)) interval between 0.002 and 1.120 GeV2/c(4). The angular observables F-L and A(T)(Re) which are related to the K-*0 polarisation and to the lepton forward-backward asymmetry, are measured to be F-L = 0.16 +/- 0.06 +/- 0.03 and A(T)(Re) = 0.10 +/- 0.18 +/- 0.05, where the first uncertainty is statistical and the second systematic. The angular observables A(T)((2)) and A(T)(Im) which are sensitive to the photon polarisation in this q(2) range, are found to be A(T)((2)) = – 0.23 +/- 0.23 +/- 0.05 and A(T)(Im) = 0.14 +/- 0.22 +/- 0.05. The results are consistent with Standard Model predictions.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2016). Angular analysis of the B-0 -> K*(0) mu(+) mu(-) decay using 3 fb(-1) of integrated luminosity. J. High Energy Phys., 02(2), 104–79pp.
Abstract: An angular analysis of the B-0 -> K*(0) (-> K+pi(-))mu(+)mu(-) decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb(-1) of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K+pi(-) system in an S-wave configuration. The angular observables and their correlations are reported in bins of q(2), the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q(2)-dependent decay amplitudes in the region 1.1 < q(2) < 6.0 GeV2/(c)4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2018). Angular moments of the decay Lambda(0)(b) -> Lambda mu(+)mu(-) at low hadronic recoil. J. High Energy Phys., 09(9), 146–27pp.
Abstract: An analysis of the angular distribution of the decay Lambda(0)(b) -> Lambda mu(+)mu(-) is presented, using data collected with the LHCb detector between 2011 and 2016 and corresponding to an integrated luminosity of approximately 5 fb(-1). Angular observables are determined using a moment analysis of the angular distribution at low hadronic recoil, corresponding to the dimuon invariant mass squared range 15 < q(2) < 20 GeV2/c(4). The full basis of observables is measured for the first time. The lepton-side, hadron-side and combined forward-backward asymmetries of the decay are determined to be A(FB)(l) = -0.39 +/- 0.04 (stat) +/- 0.01 (syst), AFB(h) = -0.30 +/- 0.05 (stat) +/- 0.02 (syst), A(FB)(lh) = +0.25 +/- 0.04 (stat) +/- 0.01 (syst). The measurements are consistent with Standard Model predictions.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). B flavour tagging using charm decays at the LHCb experiment. J. Instrum., 10, P10005–16pp.
Abstract: An algorithm is described for tagging the flavour content at production of neutral B mesons in the LHCb experiment. The algorithm exploits the correlation of the flavour of a B meson with the charge of a reconstructed secondary charm hadron from the decay of the other b hadron produced in the proton-proton collision. Charm hadron candidates are identified in a number of fully or partially reconstructed Cabibbo-favoured decay modes. The algorithm is calibrated on the self-tagged decay modes B+ -> J/psi K+ and B-0 -> J/psi K*(0) using 3.0fb(-1) of data collected by the LHCb experiment at pp centre-of-mass energies of 7TeV and 8TeV. Its tagging power on these samples of B -> J/psi X decays is (0.30 +/- 0.01 +/- 0.01) %.
|