LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). First Observation of Top Quark Production in the Forward Region. Phys. Rev. Lett., 115(11), 112001–10pp.
Abstract: Top quark production in the forward region in proton-proton collisions is observed for the first time. The W + b final state with W -> μnu is reconstructed using muons with a transverse momentum, p(T), larger than 25 GeV in the pseudorapidity range 2.0 < eta < 4.5. The b jets are required to have 50 < p(T) < 100 GeV and 2.2 < eta < 4.2, while the transverse component of the sum of the muon and b-jet momenta must satisfy p(T) > 20 GeV. The results are based on data corresponding to integrated luminosities of 1.0 and 2.0 fb(-1) collected at center-of-mass energies of 7 and 8 TeV by LHCb. The inclusive top quark production cross sections in the fiducial region are sigma(top)[7 TeV] = 239 +/- 53(stat) +/- 33(syst) +/- 24(theory) fb; sigma(top)[8 TeV ] = 289 +/- 43(stat) +/- 40(syst) +/- 29(theory) fb: These results, along with the observed differential yields and charge asymmetries, are in agreement with next-to-leading order standard model predictions.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Observation of the Doubly Charmed Baryon Xi(++)(cc). Phys. Rev. Lett., 119(11), 112001–10pp.
Abstract: A highly significant structure is observed in the Lambda K-+(c)-pi(+)pi(+) mass spectrum, where the Lambda(+)(c) baryon is reconstructed in the decay mode pK(-)pi(+). The structure is consistent with originating from a weakly decaying particle, identified as the doubly charmed baryon Xi(++)(cc). The difference between the masses of the Xi(++)(cc) and Lambda(+)(c) states is measured to be 1334.94 +/- 0.72(stat.) +/- 0.27(syst.) MeV/c(2), and the Xi(++)(cc) mass is then determined to be 3621.40 +/- 0.72(stat.) +/- 0.27(syst.) +/- 0.14(Lambda(+)(c)) MeV/c(2), where the last uncertainty is due to the limited knowledge of the Lambda(+)(c) mass. The state is observed in a sample of proton-proton collision data collected by the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.7 fb(-1), and confirmed in an additional sample of data collected at 8 TeV.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Measurement of the Ratio of Branching Fractions B((B)over-bar(0) -> D-*(+)tau(-)(nu)over-bar(tau))/B((B)over-bar(0) -> D-*(+)mu(-)(nu)over-bar(mu)). Phys. Rev. Lett., 115(11), 111803–10pp.
Abstract: The branching fraction ratio R(D-*) = B((B) over bar (0) -> D-*(+)tau(-)(nu) over bar (tau))/B((B) over bar (0) -> D-*(+)mu(-)(nu) over bar (mu)) is measured using a sample of proton-proton collision data corresponding to 3.0 fb(-1) of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode tau(-) -> mu(-)(nu) over bar (mu)nu(tau). The semitauonic decay is sensitive to contributions from non-standard-model particles that preferentially couple to the third generation of fermions, in particular, Higgs-like charged scalars. A multidimensional fit to kinematic distributions of the candidate (B) over bar (0) decays gives R(D-*) = 0.336 +/- 0.027(stat) +/- 0.030(syst). This result, which is the first measurement of this quantity at a hadron collider, is 2.1 standard deviations larger than the value expected from lepton universality in the standard model.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., Ruiz Valls, P., et al. (2017). Observation of B-c(+) -> (DK+)-K-0 Decays. Phys. Rev. Lett., 118(11), 111803–9pp.
Abstract: Using proton-proton collision data corresponding to an integrated luminosity of 3.0 fb(-1), recorded by the LHCb detector at center-of-mass energies of 7 and 8 TeV, the B-c(+) -> (DK+)-K-0 decay is observed with a statistical significance of 5.1 standard deviations. By normalizing to B-c(+) -> (D) over bar (0)pi(+) decays, a measurement of the branching fraction multiplied by the production rates for B-c(+) relative to B+ mesons in the LHCb acceptance is obtained, R-D0K = (f(c)/f(u)) x B(B-c(+) -> (DK+)-K-0) = (9.3(-2.5)(+2.8) +/- 0.6) x 10(-7), where the first uncertainty is statistical and the second is systematic. This decay is expected to proceed predominantly through weak annihilation and penguin amplitudes, and is the first B-c(+) decay of this nature to be observed.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Isospin Amplitudes in Lambda(0)(b) -> J/psi Lambda (Sigma(0)) and Xi(0)(b)-> J/psi Xi(0) (Lambda) Decays. Phys. Rev. Lett., 124(11), 111802–11pp.
Abstract: Ratios of isospin amplitudes in hadron decays are a useful probe of the interplay between weak and strong interactions and allow searches for physics beyond the standard model. We present the first results on isospin amplitudes in b-baryon decays, using data corresponding to an integrated luminosity of 8.5 fb(-1), collected with the LHCb detector in pp collisions at center of mass energies of 7, 8, and 13 TeV. The isospin amplitude ratio vertical bar A(1) (Delta(0)(b) -> J/psi(Sigma(0)) /A(0) (Delta(0)(b) -> J/psi Lambda)vertical bar, where the subscript on A indicates the final-state isospin, is measured to be less than 1/21.8 at 95% confidence level. The Cabibbo suppressed Xi(0)(b) -> J/psi Lambda decay is observed for the first time, allowing for the measurement vertical bar A(0) (Xi(0)(b) -> J/psi Lambda) / A(1/2 )(Xi(0)(b) -> J/psi Xi(0))vertical bar = 0.37 +/- 0.06 +/- 0.02, where the uncertainties are statistical and systematic, respectively.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2017). Measurement of B-s(0) and D-s(-) Meson Lifetimes. Phys. Rev. Lett., 119(10), 101801–10pp.
Abstract: We report on a measurement of the flavor-specific B-s(0) lifetime and of the D-s(-) lifetime using proton-proton collisions at center-of-mass energies of 7 and 8 TeV, collected by the LHCb experiment and corresponding to 3.0 fb(-1) of integrated luminosity. Approximately 407 000 B-s(0) -> D-s(()*()) -> D-s(()*()-) mu+v(mu) decays are partially reconstructed in the K+K-pi(-)mu(+) final state. The B-s(0) and D-s(-) natural widths are determined using, as a reference, kinematically similar B-0 -> Dd(*)(-) mu+v(mu) decays reconstructed in the same final state. The resulting differences between widths of B-s(0) and B-0 mesons and of D-s(-) and D- mesons are Delta(Gamma)(B) = -0.0115 +/- 0.0053(stat) +/- 0.0041 (syst) ps(-1) and Delta(Gamma)(D) = 1.0131 +/- 0.0117(stat) +/- 0.0065(syst) ps(-1), respectively. Combined with the known B-0 and D- lifetimes, these yield the flavor-specific B-s(0) lifetime, tau(fs)(Bs0) = 1.547 +/- 0.013 (stat) +/- 0.010 (syst) +/- 0.004(tau(B)) ps and the D-s(-) lifetime, tau(Ds-) = 0.5064 +/- 0.0030(stat) +/- 0.0017(syst) +/- 0.0017(sys) +/- 0.0017(tau(D)). The last uncertainties originate from the limited knowledge of the B-0 and D- lifetimes. The results improve upon current determinations.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Martinez-Vidal, F., Oyanguren, A., Remon Alepuz, C., et al. (2019). Measurement of the relative B- -> D-0 / D*(0) / D**(0)mu(-)(nu)over-bar(mu) branching fractions using B- mesons from (B)over-bar(S)(2)*(0) decays. Phys. Rev. D, 99(9), 092009–16pp.
Abstract: The decay of the narrow resonance (B) over bar (s2)*(0 )-> B(-)K(+)can be used to determine the B- momentum in partially reconstructed decays without any assumptions on the decay products of the r meson. This technique is employed for the first time to distinguish contributions from D-0, D*(0), and higher-mass charmed states (D(0)) in semileptonic B- decays by using the missing-mass distribution. The measurement is performed using a data sample corresponding to an integrated luminosity of 3.0 fb(-1) collected with the LHCb detector in pp collisions at center-of-mass energies of 7 and 8 TeV. The resulting branching fractions relative to the inclusive B- -> (DX)-X-0 mu(-)(nu) over bar (mu )are f(D)(0)= B(B- -> D-0 mu(-)(nu) over bar mu/B(B- ->(DX)-D- -X-0 mu(-)(nu) over bar (mu))( )= 0.25( )+/- 0.06, f( D)(0 )= B(B- -> (D(0) -> (DX)-X-0)mu(-)(nu) over bar (mu))/B(B--> (DX)-X-0 mu(-)(nu) over bar (mu)) = 0.21 +/- 0.07, with f(D)*(0) = 1 – f(D)(0) – f(D)(0) making up the remainder.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2016). Measurement of the B-s(0) -> D-s(()*D-)+(s)(*()-) branching fractions. Phys. Rev. D, 93(9), 092008–11pp.
Abstract: The branching fraction of the decay B-s(0) -> D-s(()*D-)+(s)(*()-) is measured using pp collision data corresponding to an integrated luminosity of 1.0 fb(-1), collected using the LHCb detector at a center-of-mass energy of 7 TeV. It is found to be B(B-s(0) -> D-s(()*D-)(s)(*()-)) = (3.05 +/- 0.10 +/- 0.20 +/- 0.34)%, where the uncertainties are statistical, systematic, and due to the normalization channel, respectively. The branching fractions of the individual decays corresponding to the presence of one or two D-s(*+/-) are also measured. The individual branching fractions are found to be B(B-s(0) -> D-s*D-+/-(s)-/+) = (1.35 +/- 0.06 +/- 0.09 +/- 0.15)%, B(B-s(0) -> D-s*D-+(s)*(-)) = (1.27 +/- 0.08 +/- 0.10 +/- 0.14)%. All three results are the most precise determinations to date.
|
LHCb Collaboration(Aaij, R. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2016). Measurement of the mass and lifetime of the Omega(-)(b) baryon. Phys. Rev. D, 93(9), 092007–12pp.
Abstract: A proton-proton collision data sample, corresponding to an integrated luminosity of 3 fb(-1) collected by LHCb at root s = 7 and 8 TeV, is used to reconstruct 63 +/- 9 Omega(-)(b) -> Omega(0)(c)pi(-), Omega(0)(c) -> pK(-)K(-)pi(+) decays. Using the Xi(-)(b) ->Xi(0)(c)pi(-), Xi(0)(c) -> pK(-)K(-)pi(+) decay mode for calibration, the lifetime ratio and the absolute lifetime of the Omega(-)(b) baryon are measured to be tau(Omega b-)/tau(Xi b-) = 1.11 +/- 0.16 +/- 0.03, tau(Omega b-) = 1.78 +/- 0.26 +/- 0.05 +/- 0.06 ps, where the uncertainties are statistical, systematic and from the calibration mode (for tau(Omega b-) only). A measurement is also made of the mass difference, m(Omega b-) – m(Xi b-), and the corresponding Omega(-)(b) mass, which yields m(Omega b-) – m(Xi b-) = 247.4 +/- 3.2 +/- 0.5 MeV/c(2), m(Omega b-) = 6045.1 +/- 3.2 +/- 0.5 +/- 0.6 MeV/c(2). These results are consistent with previous measurements.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2020). Study of the lineshape of the chi(c1) (3872) state. Phys. Rev. D, 102(9), 092005–20pp.
Abstract: A study of the lineshape of the chi(c1) (3872) state is made using a data sample corresponding to an integrated luminosity of 3 fb(-1) collected in pp collisions at center-of-mass energies of 7 and 8 TeV with the LHCb detector. Candidate chi(c1)(3872) and psi(2S) mesons from b-hadron decays are selected in the J/psi pi(+)pi(-) decay mode. Describing the lineshape with a Breit-Wigner function, the mass splitting between the chi(c1 )(3872) and psi(2S) states, Delta m, and the width of the chi(c1 )(3872) state, Gamma(Bw), are determined to be (Delta m=185.598 +/- 0.067 +/- 0.068 Mev,)(Gamma BW=1.39 +/- 0.24 +/- 0.10 Mev,) where the first uncertainty is statistical and the second systematic. Using a Flatte-inspired model, the mode and full width at half maximum of the lineshape are determined to be (mode=3871.69+0.00+0.05 MeV.)(FWHM=0.22-0.04+0.13+0.07+0.11-0.06-0.13 MeV, ) An investigation of the analytic structure of the Flatte amplitude reveals a pole structure, which is compatible with a quasibound D-0(D) over bar*(0) state but a quasivirtual state is still allowed at the level of 2 standard deviations.
|