CMS and LHCb Collaborations(Khachatryan, V. et al), Martinez-Vidal, F., Oyanguren, A., Ruiz Valls, P., & Sanchez Mayordomo, C. (2015). Observation of the rare B-s(0)->mu(+)mu(-) decay from the combined analysis of CMS and LHCb data. Nature, 522(7554), 68–72.
Abstract: The standard model of particle physics describes the fundamental particles and their interactions via the strong, electromagnetic and weak forces. It provides precise predictions for measurable quantities that can be tested experimentally. The probabilities, or branching fractions, of the strange B meson (B-s(0)) and the B-0 meson decaying into two oppositely charged muons (mu(+) and mu(-)) are especially interesting because of their sensitivity to theories that extend the standard model. The standard model predicts that the B-s(0)->mu(+)mu(-) and B-0 ->mu(+)mu(-) decays are very rare, with about four of the former occurring for every billion B-s(0) mesons produced, and one of the latter occurring for every ten billion B-0 mesons(1). A difference in the observed branching fractions with respect to the predictions of the standard model would provide a direction in which the standard model should be extended. Before the Large Hadron Collider (LHC) at CERN2 started operating, no evidence for either decay mode had been found. Upper limits on the branching fractions were an order of magnitude above the standard model predictions. The CMS (Compact Muon Solenoid) and LHCb(Large Hadron Collider beauty) collaborations have performed a joint analysis of the data from proton-proton collisions that they collected in 2011 at a centre-of-mass energy of seven teraelectronvolts and in 2012 at eight teraelectronvolts. Here we report the first observation of the B-s(0)->mu(+)mu(-) decay, with a statistical significance exceeding six standard deviations, and the best measurement so far of its branching fraction. Furthermore, we obtained evidence for the B-0 ->mu(+)mu(-) decay with a statistical significance of three standard deviations. Both measurements are statistically compatible with standard model predictions and allow stringent constraints to be placed on theories beyond the standard model. The LHC experiments will resume taking data in 2015, recording proton-proton collisions at a centre-of-mass energy of 13 teraelectronvolts, which will approximately double the production rates of B-s(0) and B-0 mesons and lead to further improvements in the precision of these crucial tests of the standard model.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of Two Resonances in the Lambda(0)(b)pi(+/-) Systems and Precise Measurement of Sigma(+/-)(b) and Sigma(*+/-)(b) Properties. Phys. Rev. Lett., 122(1), 012001–9pp.
Abstract: The first observation of two structures consistent with resonances in the final states Lambda(0)(b)pi(-) and Lambda(0)(b)pi(+) thorn is reported using samples of pp collision data collected by the LHCb experiment at root s = 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb(-1). The ground states Sigma(+/-)(b) and Sigma(*+/-)(b) are also confirmed and their masses and widths are precisely measured.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Search for CP violation through an amplitude analysis of D-0 K+K-+- decays. J. High Energy Phys., 02(2), 126–34pp.
Abstract: A search for CP violation in the Cabibbo-suppressed D-0 K+K-+- decay mode is performed using an amplitude analysis. The measurement uses a sample of pp collisions recorded by the LHCb experiment during 2011 and 2012, corresponding to an integrated luminosity of 3.0 fb(-1). The D-0 mesons are reconstructed from semileptonic b-hadron decays into D0-X final states. The selected sample contains more than 160 000 signal decays, allowing the most precise amplitude modelling of this D-0 decay to date. The obtained amplitude model is used to perform the search for CP violation. The result is compatible with CP symmetry, with a sensitivity ranging from 1% to 15% depending on the amplitude considered.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of B+, B-0 and Lambda(0)(b) production in pPb collisions at, root(NN)-N-s=8.16 TeV. Phys. Rev. D, 99(5), 052011–21pp.
Abstract: The production of B+, B-0 and Lambda(0)(b), hadrons is studied in proton-lead collisions at a center-of-mass energy per nucleon pair of root(NN)-N-s T = 8.16 TeV recorded with the LHCb detector at the LHC. The measurement uses a dataset corresponding to an integrated luminosity of 12.2 +/- 0.3 nb(-1) for the case where the proton beam is projected into the LHCb detector (corresponding to measuring hadron production at positive rapidity) and 18.6 +/- 0.5 nb(-1) for the lead beam projected into the LHCb detector (corresponding to measuring hadron production at negative rapidity). Double-differential cross sections are measured and used to determine forward-backward ratios and nuclear modification factors, which directly probe nuclear effects in the production of beauty hadrons. The double-differential cross sections are measured as a function of the beauty-hadron transverse momentum and rapidity in the nucleon-nucleon center-of-mass frame. Forward-to-backward cross section ratios and nuclear modification factors indicate a significant nuclear suppression at positive rapidity. The ratio of Lambda(0)(b), over B-0 production cross sections is reported and is consistent with the corresponding measurement in pp collisions.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Measurement of the mass and production rate of Xi(-)(b)( )baryons. Phys. Rev. D, 99(5), 052006–13pp.
Abstract: The first measurement of the production rate of Xi(-)(b) baryons in pp collisions relative to that of Lambda(0 )(b)baryons is reported, using data samples collected by the LHCb experiment, and corresponding to integrated luminosities of 1, 2 and 1.6 fb(-1) at root s = 7, 8 and 13 TeV, respectively. In the kinematic region 2 < eta < 6 and p(T) < 20 GeV/c, we measure f(Xi b-)/f(Lambda b0) B(Xi(-)(b)-> J/psi Xi(-))/B(Lambda(0)(b)-> J/psi Lambda)= (10.8 +/- 0.9 +/- 0.8) x 10(-2) [root s = 7,8 TeV], f(Xi b-)/f(Lambda b0) B(Xi(-)(b)-> J/psi Xi(-))/B(Lambda(0)(b)-> J/psi Lambda) =(13.1 +/- 1.1 +/- 1.0) x 10(-2) [root s = 13 TeV], where and f(Xi b-) and f(Lambda)(b0) the fragmentation fractions of b quarks into Xi(-)(b) and Lambda(0)(b) baryons, respectively; B represents branching fractions; and the uncertainties are due to statistical and experimental systematic sources. The values of f(Xi b-)/f(Lambda b0) are obtained by invoking SU(3) symmetry in the Xi(-)(b)-> J/psi Xi(-) and Lambda(0)(b)-> J/psi Lambda decays. Production asymmetries between Xi(-)(b) and (Xi) over bar (+)(b) baryons are also reported. The mass of the Xi(-)(b) baryon is also measured relative to that of the Lambda(0)(b) baryon, from which it is found that m(Xi(-)(b)) = 5796.70 +/- 0.39 +/- 0.15 +/- 0.17 MeV/c(2), where the last uncertainty is due to the precision on the known Lambda(0)(b) mass. This result represents the most precise determination of the Xi(-)(b) mass.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Model-Independent Observation of Exotic Contributions to B degrees -> J/psi K+pi(-) Decays. Phys. Rev. Lett., 122(15), 152002–10pp.
Abstract: An angular analysis of B degrees -> J/psi K+pi(-) decays is performed, using proton-proton collision data corresponding to an integrated luminosity of 3 fb(-1) collected with the LHCb detector. The m(K+pi(-) ) spectrum is divided into fine bins. In each m(K+pi(-)) bin, the hypothesis that the three-dimensional angular distribution can be described by structures induced only by K* resonances is examined, making minimal assumptions about the K+pi(-) system. The data reject the K*-only hypothesis with a large significance, implying the observation of exotic contributions in a model-independent fashion. Inspection of the m(J/psi pi(-)) vs m(K+pi(-)) plane suggests structures near m(J/psi pi(-)) = 4200 and 4600 MeV.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Dalitz plot analysis of the D+ -> K-K+K+ decay. J. High Energy Phys., 04(4), 063–36pp.
Abstract: The resonant structure of the doubly Cabibbo-suppressed decay D+-> K-K+K+ is studied for the first time. The measurement is based on a sample of pp-collision data, collected at a centre-of-mass energy of 8 TeV with the LHCb detector and corresponding to an integrated luminosity of 2 fb(-1). The amplitude analysis of this decay is performed with the isobar model and a phenomenological model based on an effective chiral Lagrangian. In both models the S-wave component in the K-K+ system is dominant, with a small contribution of the phi(1020) meson and a negligible contribution from tensor resonances. The K+K- scattering amplitudes for the considered combinations of spin (0,1) and isospin (0,1) of the two-body system are obtained from the Dalitz plot fit with the phenomenological decay amplitude.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Observation of the doubly Cabibbo-suppressed decay Xi(+)(c) -> p phi. J. High Energy Phys., 04(4), 084–18pp.
Abstract: The doubly Cabibbo- suppressed decay Xi(+)(c) -> p phi with ! K+K is observed for the fi rst time, with a statistical signi fi cance of more than fi fteen standard deviations. The data sample used in this analysis corresponds to an integrated luminosity of 2 fb recorded with the LHCb detector in pp collisions at a centre- of- mass energy of 8TeV. The ratio of branching fractions between the decay + c ! p and the singly Cabibbo- suppressed decay + c ! pK is measured to be B (Xi(+)(c) -> p phi) B (Xi(+)(c) -> p phi) = (19 : 8 0 : 7 0 : 9 0 : 2) 10 where the fi rst uncertainty is statistical, the second systematic and the third due to the knowledge of the Xi(+)(c) -> pK(+)pi(+) branching fraction.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Study of the B-0 (770)degrees K-*(892)(0) decay with an amplitude analysis of B-0 ((+-))(K+pi(-)) decays. J. High Energy Phys., 05(5), 026–31pp.
Abstract: An amplitude analysis of B-0 ((+-))(K+-) decays is performed in the two-body invariant mass regions 300 < m((+-)) < 1100 MeV/c(2), accounting for the (0), , f(0)(500), f(0)(980) and f(0)(1370) resonances, and 750 < m(K+-) < 1200 MeV/c(2), which is dominated by the K-*(892)(0) meson. The analysis uses 3 fb(-1) of proton-proton collision data collected by the LHCb experiment at centre-of-mass energies of 7 and 8 TeV. The CP averages and asymmetries are measured for the magnitudes and phase differences of the con- tributing amplitudes. The CP-averaged longitudinal polarisation fractions of the vector-vector modes are found to be fK*0 = 0.164 +/- 0.015 +/- 0.022 and fK*0 = 0.68 +/- 0.17 +/- 0.16, and their CP asymmetries, AK*0 = -0.62 +/- 0.09 +/- 0.09 and AK*0 = -0.13 +/- 0.27 +/- 0.13, where the first uncertainty is statistical and the second systematic.
|
LHCb Collaboration(Aaij, R. et al), Garcia Martin, L. M., Henry, L., Jashal, B. K., Martinez-Vidal, F., Oyanguren, A., et al. (2019). Search for Lepton-Universality Violation in B+ -> K(+)l(+)l(-) Decays. Phys. Rev. Lett., 122(19), 191801–13pp.
Abstract: A measurement of the ratio of branching fractions of the decays B+ -> K+mu(+)mu(-) and B+ -> K(+)e(+)e(-) is presented. The proton-proton collision data used correspond to an integrated luminosity of 5.0 fb(-1) recorded with the LHCb experiment at center-of-mass energies of 7, 8, and 13 TeV. For the dilepton mass-squared range 1.1 < q(2) < 6.0 GeV2/c(4) the ratio of branching fractions is measured to be R-K = 0.846(-0.054-0.014)(+0.060+0.016), where the first uncertainty is statistical and the second systematic. This is the most precise measurement of R-K to date and is compatible with the standard model at the level of 2.5 standard deviations.
|