ANTARES Collaboration(Adrian-Martinez, S. et al), Bigongiari, C., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., Lambard, G., et al. (2013). First search for neutrinos in correlation with gamma-ray bursts with the ANTARES neutrino telescope. J. Cosmol. Astropart. Phys., 03(3), 006–16pp.
Abstract: A search for neutrino-induced muons in correlation with a selection of 40 gamma-ray bursts that occurred in 2007 has been performed with the ANTARES neutrino telescope. During that period, the detector consisted of 5 detection lines. The ANTARES neutrino telescope is sensitive to TeV-PeV neutrinos that are predicted from gamma-ray bursts. No events were found in correlation with the prompt photon emission of the gamma-ray bursts and upper limits have been placed on the flux and fluence of neutrinos for different models.
|
ANTARES Collaboration(Albert, A. et al), Colomer, M., Gozzini, R., Hernandez-Rey, J. J., Illuminati, G., Khan-Chowdhury, N. R., et al. (2021). Monte Carlo simulations for the ANTARES underwater neutrino telescope. J. Cosmol. Astropart. Phys., 01(1), 064–20pp.
Abstract: Monte Carlo simulations are a unique tool to check the response of a detector and to monitor its performance. For a deep-sea neutrino telescope, the variability of the environmental conditions that can affect the behaviour of the data acquisition system must be considered, in addition to a reliable description of the active parts of the detector and of the features of physics events, in order to produce a realistic set of simulated events. In this paper, the software tools used to produce neutrino and cosmic ray signatures in the telescope and the strategy developed to represent the time evolution of the natural environment and of the detector efficiency are described.
|
ANTARES Collaboration(Albert, A. et al), Colomer, M., Gozzini, R., Hernandez-Rey, J. J., Illuminati, G., Khan-Chowdhury, N. R., et al. (2021). ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis. Astrophys. J., 911(1), 48–11pp.
Abstract: A search for astrophysical pointlike neutrino sources using the data collected by the ANTARES detector between 2007 January 29 and 2017 December 31 is presented. A likelihood method is used to assess the significance of an excess of muon neutrinos inducing track-like events in correlation with the location of a list of possible sources. Different sets of objects are tested in the analysis: (a) a subsample of the Fermi 3LAC catalog of blazars, (b) a jet-obscured population of active galactic nuclei, (c) a sample of hard X-ray selected radio galaxies, (d) a star-forming galaxy catalog, and (e) a public sample of 56 very-high-energy track events from the IceCube experiment. None of the tested sources shows a significant association with the sample of neutrinos detected by ANTARES. The smallest p-value is obtained for the catalog of radio galaxies with an equal-weights hypothesis, with a pre-trial p-value equivalent to a 2.8 sigma excess, which is equivalent to 1.6 sigma post-trial. In addition, the results of a dedicated analysis for the blazar MG3 J225517+2409 are also reported: this source is found to be the most significant within the Fermi 3LAC sample, with five ANTARES events located less than one degree from the source. This blazar showed evidence of flaring activity in Fermi data, in spacetime coincidence with a high-energy track detected by IceCube. An a posteriori significance of 2.6 sigma for the combination of ANTARES and IceCube data is reported.
|