|
ANTARES Collaboration(Aguilar, J. A. et al), Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., et al. (2012). A method for detection of muon induced electromagnetic showers with the ANTARES detector. Nucl. Instrum. Methods Phys. Res. A, 675, 56–62.
Abstract: The primary aim of ANTARES is neutrino astronomy with upward going muons created in charged current muon neutrino interactions in the detector and its surroundings. Downward going muons are background for neutrino searches. These muons are the decay products of cosmic-ray collisions in the Earth's atmosphere far above the detector. This paper presents a method to identify and count electromagnetic showers induced along atmospheric muon tracks with the ANTARES detector. The method is applied to both cosmic muon data and simulations and its applicability to the reconstruction of muon event energies is demonstrated.
|
|
|
ANTARES Collaboration(Aguilar, J. A. et al), Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., Hernandez-Rey, J. J., et al. (2011). Search for a diffuse flux of high-energy nu(mu) with the ANTARES neutrino telescope. Phys. Lett. B, 696(1-2), 16–22.
Abstract: A search for a diffuse flux of astrophysical muon neutrinos, using data collected by the ANTARES neutrino telescope is presented. A (0.83 x 2 pi) sr sky was monitored for a total of 334 days of equivalent live time. The searched signal corresponds to an excess of events, produced by astrophysical sources, over the expected atmospheric neutrino background. The observed number of events is found compatible with the background expectation. Assuming an E-2 flux spectrum, a 90% c.l. upper limit on the diffuse nu(mu) flux of E-2 Phi(90%) = 5.3 x 10(-8) GeV cm(-2) s(-1) sr(-1) in the energy range 20 TeV-2.5 PeV is obtained. Other signal models with different energy spectra are also tested and some rejected.
|
|
|
ANTARES Collaboration(Tamburini, C. et al), Aguilar, J. A., Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., et al. (2013). Deep-Sea Bioluminescence Blooms after Dense Water Formation at the Ocean Surface. PLoS One, 8(7), e67523–10pp.
Abstract: The deep ocean is the largest and least known ecosystem on Earth. It hosts numerous pelagic organisms, most of which are able to emit light. Here we present a unique data set consisting of a 2.5-year long record of light emission by deep-sea pelagic organisms, measured from December 2007 to June 2010 at the ANTARES underwater neutrino telescope in the deep NW Mediterranean Sea, jointly with synchronous hydrological records. This is the longest continuous time-series of deep-sea bioluminescence ever recorded. Our record reveals several weeks long, seasonal bioluminescence blooms with light intensity up to two orders of magnitude higher than background values, which correlate to changes in the properties of deep waters. Such changes are triggered by the winter cooling and evaporation experienced by the upper ocean layer in the Gulf of Lion that leads to the formation and subsequent sinking of dense water through a process known as “open-sea convection”. It episodically renews the deep water of the study area and conveys fresh organic matter that fuels the deep ecosystems. Luminous bacteria most likely are the main contributors to the observed deep-sea bioluminescence blooms. Our observations demonstrate a consistent and rapid connection between deep open-sea convection and bathypelagic biological activity, as expressed by bioluminescence. In a setting where dense water formation events are likely to decline under global warming scenarios enhancing ocean stratification, in situ observatories become essential as environmental sentinels for the monitoring and understanding of deep-sea ecosystem shifts.
|
|