|
ANTARES Collaboration(Adrian-Martinez, S. et al), Aguilar, J. A., Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., et al. (2011). First Search For Point Sources Of High-Energy Cosmic Neutrinos With The Antares Neutrino Telescope. Astrophys. J. Lett., 743(1), L14–6pp.
Abstract: Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 +/- 0.1 deg. The neutrino flux sensitivity is 7.5 x 10(-8)(E(v)/GeV)(-2) GeV(-1) s(-1) cm(-2) for the part of the sky that is always visible (delta < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Aguilar, J. A., Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., et al. (2012). Search for relativistic magnetic monopoles with the ANTARES neutrino telescope. Astropart Phys., 35(10), 634–640.
Abstract: Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 x 10-(17) and 8.9 x 10(-17) CM-2 s(-1) sr(-1) for monopoles with velocity beta >= 0.625.
|
|
|
ANTARES Collaboration(Adrian-Martinez, S. et al), Aguilar, J. A., Bigongiari, C., Dornic, D., Emanuele, U., Gomez-Gonzalez, J. P., et al. (2012). The positioning system of the ANTARES Neutrino Telescope. J. Instrum., 7, T08002–20pp.
Abstract: The ANTARES neutrino telescope, located 40km off the coast of Toulon in the Mediterranean Sea at a mooring depth of about 2475m, consists of twelve detection lines equipped typically with 25 storeys. Every storey carries three optical modules that detect Cherenkov light induced by charged secondary particles (typically muons) coming from neutrino interactions. As these lines are flexible structures fixed to the sea bed and held taut by a buoy, sea currents cause the lines to move and the storeys to rotate. The knowledge of the position of the optical modules with a precision better than 10cm is essential for a good reconstruction of particle tracks. In this paper the ANTARES positioning system is described. It consists of an acoustic positioning system, for distance triangulation, and a compass-tiltmeter system, for the measurement of the orientation and inclination of the storeys. Necessary corrections are discussed and the results of the detector alignment procedure are described.
Keywords: Timing detectors; Detector modelling and simulations II (electric fields, charge transport, multiplication and induction, pulse formation, electron emission, etc); Detector alignment and calibration methods (lasers, sources, particle-beams); Detector control systems (detector and experiment monitoring and slow-control systems, architecture, hardware, algorithms, databases)
|
|