|
Sakai, S., Hosaka, A., & Nagahiro, H. (2017). Effect of the final state interaction of eta ' N on the eta ' photoproduction off the nucleon. Phys. Rev. C, 95(4), 045206–9pp.
Abstract: We investigate the eta' photoproduction off the nucleon with a particular interest in the effect of the final-state interaction (FSI) of the eta' meson and nucleon (eta' N) based on the three-flavor linear sigma model. We find an enhancement in the cross section of the eta' photoproduction near the eta' N-threshold energy owing to the eta' N FSI. With the eta' meson at forward angles, the energy dependence near the eta' N threshold is well reproduced with the eta' N FSI. The cross section at backward angles can also be a good probe to investigate the strength of the eta' N interaction.
|
|
|
Debastiani, V. R., Sakai, S., & Oset, E. (2017). Role of a triangle singularity in the pi N(1535) contribution to gamma p -> p pi(0) eta. Phys. Rev. C, 96(2), 025201–7pp.
Abstract: We have studied the gamma p -> p pi(0) eta reaction paying attention to the two main mechanisms at low energies, the gamma p ->Delta(1700) -> eta Delta(1232) and the gamma p -> Delta(1700) -> pi N(1535). Both are driven by the photoexcitation of the Delta (1700) and the second one involves a mechanism that leads to a triangle singularity. We are able to evaluate quantitatively the cross section for this process and show that it agrees with the experimental determination. Yet there are some differences with the standard partial wave analysis which does not include explicitly the triangle singularity. The exercise also shows the convenience of exploring possible triangle singularities in other reactions and how a standard partial wave analysis can be extended to accommodate them.
|
|
|
Pavao, R. P., Sakai, S., & Oset, E. (2017). Triangle singularities in B- -> D*(0)pi(-)pi(0)eta and B- -> D*(0)pi(-)pi(+)pi(-). Eur. Phys. J. C, 77(9), 599–8pp.
Abstract: The possible role of the triangle mechanism in the B- decay into D*(0)pi(-)pi(0)eta and D*(0)pi(-)pi(+)pi(-) is investigated. In this process, the triangle singularity appears from the decay of B- into D*K-0(-) K*(0) followed by the decay of K-*0 into pi(-) K+ and the fusion of the K+ K-, which forms the a(0)(980) or f(0)(980), which finally decay into pi(0)eta or pi(+)pi(-), respectively. The triangle mechanism from the (K) over bar * K (K) over bar loop generates a peak around 1420 MeV in the invariant mass of pi(-) a(0) or pi(-) f(0), and it gives sizable branching fractions, Br(B- -> D*(0)pi(-) a(0); a(0) -> pi(0)eta) = (1.66 +/- 0.45) x 10(-6) and Br(B- -> D*(0)pi(-) f(0); f(0) -> pi(+)pi(-)) = (2.82 +/- 0.75) x 10(-6).
|
|
|
Sakai, S., Roca, L., & Oset, E. (2017). Charm-beauty meson bound states from B (B*)D(D*) and interaction B (B*)(D)over-bar((D)over-bar*). Phys. Rev. D, 96(5), 054023–9pp.
Abstract: We evaluate the s-wave interaction of pseudoscalar and vector mesons with both charm and beauty to investigate the possible existence of molecular BD, B* D, BD*, B* D*, B (D) over bar, B* (D) over bar, B (D) over bar*, or B* (D) over bar* meson states. The scattering amplitude is obtained implementing unitarity starting from a tree level potential accounting for the dominant vector meson exchange. The diagrams are evaluated using suitable extensions to the heavy flavor sector of the hidden gauge symmetry Lagrangians involving vector and pseudoscalar mesons, respecting heavy quark spin symmetry. We obtain bound states at energies above 7 GeV for BD (J(P) = 0(+)), B* D (1(+)), BD* (1(+)), and B* D* (0(+), 1(+,) 2(+)), all in isospin 0. For B (D) over bar (0(+)), B* (D) over bar (1(+)), B (D) over bar* (1(+)), and B* (D) over bar* (0(+), 1(+), 2(+)) we also find similar bound states in I = 0, but much less bound, which would correspond to exotic meson states with _ (b) over bar and (c) over bar quarks, and for the I = 1 we find a repulsive interaction. We also evaluate the scattering lengths in all cases, which can be tested in current investigations of lattice QCD.
|
|
|
Sakai, S., Oset, E., & Liang, W. H. (2017). Abnormal isospin violation and a(0) – f(0) mixing in the D-s(+) -> pi(+) pi(0)a(0)(980)(f(0)(980)) reactions. Phys. Rev. D, 96(7), 074025–11pp.
Abstract: We have chosen the reactions D-s(+) -> pi(+) pi(0)a(0)(980)(f(0)(980)) investigating the isospin violating channel D-s(+) -> pi+ pi(0)f(0)(980). The reaction was chosen because by varying the pi(0)a(0)(980)(f(0)(980)) invariant mass one goes through the peak of a triangle singularity emerging from D-s(+) -> pi(K) over bar *K, followed by (K) over bar* -> (K) over bar pi(0) and the further merging of K (K) over bar to produce the a(0)(980) or f(0)(980). We found that the amount of isospin violation had its peak precisely at the value of the pi(0)a(0)(980)(f(0)(980)) invariant mass where the singularity has its maximum, stressing the role of the triangle singularities as a factor to enhance the mixing of the f(0)(980) and a(0)(980) resonances. We calculate absolute rates for the reactions and show that they are within present measurable range. The measurement of these reactions would bring further information into the role of triangle singularities in isospin violation and the a(0) – f(0) mixing, in particular, and shed further light into the nature of the low energy scalar mesons.
|
|
|
Dias, J. M., Debastiani, V. R., Roca, L., Sakai, S., & Oset, E. (2017). Binding of the BD(D)over-bar and BDD systems. Phys. Rev. D, 96(9), 094007–6pp.
Abstract: We study theoretically the BD (D) over bar and BDD systems to see if they allow for possible bound or resonant states. The three-body interaction is evaluated implementing the fixed center approximation to the Faddeev equations which considers the interaction of a D or (D) over bar particle with the components of a BD cluster, previously proved to form a bound state. We find an I(J(P)) = 1/2(0(-)) bound state for the BD (D) over bar system at an energy around 8925-8985 MeV within uncertainties, which would correspond to a bottom hidden-charm meson. In contrast, for the BDD system, which would be bottom double-charm and hence manifestly exotic, we have found hints of a bound state in the energy region 8935-8985 MeV, but the results are not stable under the uncertainties of the model, and we cannot assure, nor rule out, the possibility of a BDD three-body state.
|
|
|
Sakai, S., Oset, E., & Ramos, A. (2018). Triangle singularities in B- -> K- pi- D(s0)+ and B- -> K- pi- D(s1)+. Eur. Phys. J. A, 54(1), 10–14pp.
Abstract: We study the appearance of structures in the decay of the B- into K-pi D--(s0)+ (2317) and K-pi D--(s1)+ (2460) final states by forming invariant mass distributions of pi D--(s0)+ and pi D--(s1)+ pairs, respectively. The structure in the distribution is associated to the kinematical triangle singularity that appears when the B- -> K- K*(0) D-0 (B- -> K- K*(0) D*(0)) decay process is followed by the decay of the K*(0) into pi(-) K+ and the subsequent rescattering of the K+ D-0 (K+ D*(0)) pair forming the D-s0(+) (2317) (D-s1(+) (2460)) resonance. We find this type of non-resonant peaks at 2850MeV in the invariant mass of pi D--(s0) pairs from B- -> K- pi(-) D-s0(+) (2317) decays and around 3000MeV in the invariant mass of pi D--(s1)+ pairs from B- -> K- pi(-) D-s1(+)(2460) decays. By employing the measured branching ratios of the B- -> K- K*(0) D-0 and B- -> K- K*(0) D*(0) decays, we predict the branching ratios for the processes B- into K-pi D--(s0)+ (2317) K-pi D--(s1)+ (2460), in the vicinity of the triangle singularity peak, to be about 8 x 10(-6) and 1 x 10(-6), respectively. The observation of this reaction would also give extra support to the molecular picture of the D-s0(+)(2317) and D-s1(+)(2460).
|
|
|
Bayar, M., Pavao, R., Sakai, S., & Oset, E. (2018). Role of the triangle singularity in Lambda(1405) production in the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma processes. Phys. Rev. C, 97(3), 035203–12pp.
Abstract: We have investigated the cross section for the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma reactions, paying attention to a mechanism that develops a triangle singularity. The triangle diagram is realized by the decay of a N* to K* Sigma and the K* decay into pi K, and the pi Sigma finally merges into Lambda (1405). The mechanism is expected to produce a peak around 2140 MeV in the K Lambda (1405) invariant mass. We found that a clear peak appears around 2100 MeV in the K Lambda (1405) invariant mass, which is about 40 MeV lower than the expectation, and that is due to the resonance peak of a N* resonance which plays a crucial role in the K* Sigma production. The mechanism studied produces the peak of the Lambda (1405) around or below 1400 MeV, as is seen in the pp -> pK(+) pi Sigma HADES experiment.
|
|
|
Dias, J. M., Roca, L., & Sakai, S. (2018). Prediction of new states from D(*)B(*)(B)over-bar(*) three-body interactions. Phys. Rev. D, 97(5), 056019–8pp.
Abstract: We study three-body systems composed of D(*), B(*), and (B) over bar(*) in order to look for possible bound states or resonances. In order to solve the three-body problem, we use the fixed center approach for the Faddeev equations considering that the B*(B) over bar*(B (B) over bar) are clusterized systems, generated dynamically, which interact with a third particle D((D) over bar) whose mass is much smaller than the two-body bound states forming the cluster. In the DB*(B) over bar*, D*B*(B) over bar*, DB (B) over bar, and D*B (B) over bar systems with I = 1/2, we found clear bound state peaks with binding energies typically a few tens MeV and more uncertain broad resonant states about ten MeV above the threshold with widths of a few tens MeV.
|
|
|
Liang, W. H., Sakai, S., Xie, J. J., & Oset, E. (2018). Triangle singularity enhancing isospin violation in (B)over-bar(s)(0)-> J/psi pi(0)f(0)(980). Chin. Phys. C, 42(4), 044101–9pp.
Abstract: We perform calculations for the (B) over bar (0)(s)-> J/psi pi(0)f(0)(980) and (B) over bar (0)(s)-> J/psi pi(0)a(0)(980) reactions, showing that the first is isospin-suppressed while the second is isospin-allowed. The reaction proceeds via a triangle mechanism, with (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c., followed by the decay K*-> K pi and a further fusion of K (K) over bar into the f(0)(980) or a(0)(980). We show that the mechanism develops a singularity around the pi(0)f(0)(980) or pi(0)a(0)(980) invariant mass of 1420 MeV, where the pi(0)f(0) and pi(0)a(0) decay modes are magnified and also the ratio of pi(0)f(0) to pi(0)a(0) production. Using experimental information for the (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c. decay, we are able to obtain absolute values for the reactions studied which fall into the experimentally accessible range. The reactions proposed and the observables evaluated, when contrasted with actual experiments, should be very valuable to obtain information on the nature of the low lying scalar mesons.
|
|