|
Debastiani, V. R., Sakai, S., & Oset, E. (2017). Role of a triangle singularity in the pi N(1535) contribution to gamma p -> p pi(0) eta. Phys. Rev. C, 96(2), 025201–7pp.
Abstract: We have studied the gamma p -> p pi(0) eta reaction paying attention to the two main mechanisms at low energies, the gamma p ->Delta(1700) -> eta Delta(1232) and the gamma p -> Delta(1700) -> pi N(1535). Both are driven by the photoexcitation of the Delta (1700) and the second one involves a mechanism that leads to a triangle singularity. We are able to evaluate quantitatively the cross section for this process and show that it agrees with the experimental determination. Yet there are some differences with the standard partial wave analysis which does not include explicitly the triangle singularity. The exercise also shows the convenience of exploring possible triangle singularities in other reactions and how a standard partial wave analysis can be extended to accommodate them.
|
|
|
Bayar, M., Pavao, R., Sakai, S., & Oset, E. (2018). Role of the triangle singularity in Lambda(1405) production in the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma processes. Phys. Rev. C, 97(3), 035203–12pp.
Abstract: We have investigated the cross section for the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma reactions, paying attention to a mechanism that develops a triangle singularity. The triangle diagram is realized by the decay of a N* to K* Sigma and the K* decay into pi K, and the pi Sigma finally merges into Lambda (1405). The mechanism is expected to produce a peak around 2140 MeV in the K Lambda (1405) invariant mass. We found that a clear peak appears around 2100 MeV in the K Lambda (1405) invariant mass, which is about 40 MeV lower than the expectation, and that is due to the resonance peak of a N* resonance which plays a crucial role in the K* Sigma production. The mechanism studied produces the peak of the Lambda (1405) around or below 1400 MeV, as is seen in the pp -> pK(+) pi Sigma HADES experiment.
|
|
|
Dai, L. R., Pavao, R., Sakai, S., & Oset, E. (2019). tau(-) -> nu tau M1 M2, with M1, M2 pseudoscalar or vector mesons. Eur. Phys. J. A, 55(2), 20–22pp.
Abstract: .We perform a calculation of the -M1M2, with M1,M2 either pseudoscalar or vector mesons using the basic weak interaction and angular momentum algebra to relate the different processes. The formalism also leads to a different interpretation of the role played by G-parity in these decays. We also observe that, while PPp-wave production is compatible with chiral perturbation theory and experiment, VP and VVp-wave production is clearly incompatible with experiment and we develop the formalism also in this case, producing the VP or VV pairs in s-wave. We compare our results with experiment and other theoretical approaches for rates and invariant mass distributions and make predictions for unmeasured decays. We show the value of these reactions, particularly if the M1M2 mass distribution is measured, as a tool to learn about the meson-meson interaction and the nature of some resonances, coupling to two mesons, which are produced in such decays.
|
|
|
Jiang, S. J., Sakai, S., Liang, W. H., & Oset, E. (2019). The chi c J decay to phi K*(K)over-bar, phi h(1)(1380) testing the nature of axial vector meson resonances. Phys. Lett. B, 797, 134831–5pp.
Abstract: We perform a theoretical study of the chi(cJ) -> phi K*(K) over bar -> phi K pi(K) over bar reaction taking into account the K*(K) over bar final state interaction, which in the chiral unitary approach is responsible, together with its coupled channels, for the formation of the low lying axial vector mesons, in this case the h(1)(1380) given the selection of quantum numbers. Based on this picture we can easily explain why in the chi(c0) decay the h(1)(1380) resonance is not produced, and, in the case of chi(c1) and chi(c2) decay, why a dip in the K+ pi K-0(-) mass distribution appears in the 1550-1600 MeV region, that in our picture comes from a destructive interference between the tree level mechanism and the rescattering that generates the h(1)(1380) state. Such a dip is not reproduced in pictures where the nominal h(1)(1380) signal is added incoherently to a background, which provides support to the picture where the resonance appears from rescattering of vector-pseudoscalar components.
|
|
|
Liang, W. H., Sakai, S., & Oset, E. (2019). Theoretical description of the J/psi -> eta(eta ')h(1)(1380), J/psi -> eta(eta ')h(1)(1170) and J/psi -> pi(0)b(1) (1235)(0) reactions. Phys. Rev. D, 99(9), 094020–10pp.
Abstract: We have made a study of the J/psi -> eta'h(1), eta h(1) [with h(1) being /11(1170) and h(1)(1380)1 and P/psi ->pi(0)b(1) 171(1235)(0) assuming the axial vector mesons to be dynamically generated from the pseudoscalar-vectormeson interaction. We have taken the needed input from previous studies of the J/psi -> phi pi pi, omega pi pi reactions. We obtain fair agreement with experimental data and provide an explanation on why the recent experiment on J/psi -> eta'h(1)(1380), h(1)(1380) -> K*K-+(-) + c.c. observed in the K+K-pi(0) mode observes the peak of the h(1)(1380) at a higher energy than its nominal mass.
|
|
|
Pavao, R. P., Sakai, S., & Oset, E. (2017). Triangle singularities in B- -> D*(0)pi(-)pi(0)eta and B- -> D*(0)pi(-)pi(+)pi(-). Eur. Phys. J. C, 77(9), 599–8pp.
Abstract: The possible role of the triangle mechanism in the B- decay into D*(0)pi(-)pi(0)eta and D*(0)pi(-)pi(+)pi(-) is investigated. In this process, the triangle singularity appears from the decay of B- into D*K-0(-) K*(0) followed by the decay of K-*0 into pi(-) K+ and the fusion of the K+ K-, which forms the a(0)(980) or f(0)(980), which finally decay into pi(0)eta or pi(+)pi(-), respectively. The triangle mechanism from the (K) over bar * K (K) over bar loop generates a peak around 1420 MeV in the invariant mass of pi(-) a(0) or pi(-) f(0), and it gives sizable branching fractions, Br(B- -> D*(0)pi(-) a(0); a(0) -> pi(0)eta) = (1.66 +/- 0.45) x 10(-6) and Br(B- -> D*(0)pi(-) f(0); f(0) -> pi(+)pi(-)) = (2.82 +/- 0.75) x 10(-6).
|
|
|
Sakai, S., Oset, E., & Ramos, A. (2018). Triangle singularities in B- -> K- pi- D(s0)+ and B- -> K- pi- D(s1)+. Eur. Phys. J. A, 54(1), 10–14pp.
Abstract: We study the appearance of structures in the decay of the B- into K-pi D--(s0)+ (2317) and K-pi D--(s1)+ (2460) final states by forming invariant mass distributions of pi D--(s0)+ and pi D--(s1)+ pairs, respectively. The structure in the distribution is associated to the kinematical triangle singularity that appears when the B- -> K- K*(0) D-0 (B- -> K- K*(0) D*(0)) decay process is followed by the decay of the K*(0) into pi(-) K+ and the subsequent rescattering of the K+ D-0 (K+ D*(0)) pair forming the D-s0(+) (2317) (D-s1(+) (2460)) resonance. We find this type of non-resonant peaks at 2850MeV in the invariant mass of pi D--(s0) pairs from B- -> K- pi(-) D-s0(+) (2317) decays and around 3000MeV in the invariant mass of pi D--(s1)+ pairs from B- -> K- pi(-) D-s1(+)(2460) decays. By employing the measured branching ratios of the B- -> K- K*(0) D-0 and B- -> K- K*(0) D*(0) decays, we predict the branching ratios for the processes B- into K-pi D--(s0)+ (2317) K-pi D--(s1)+ (2460), in the vicinity of the triangle singularity peak, to be about 8 x 10(-6) and 1 x 10(-6), respectively. The observation of this reaction would also give extra support to the molecular picture of the D-s0(+)(2317) and D-s1(+)(2460).
|
|
|
Liang, W. H., Sakai, S., Xie, J. J., & Oset, E. (2018). Triangle singularity enhancing isospin violation in (B)over-bar(s)(0)-> J/psi pi(0)f(0)(980). Chin. Phys. C, 42(4), 044101–9pp.
Abstract: We perform calculations for the (B) over bar (0)(s)-> J/psi pi(0)f(0)(980) and (B) over bar (0)(s)-> J/psi pi(0)a(0)(980) reactions, showing that the first is isospin-suppressed while the second is isospin-allowed. The reaction proceeds via a triangle mechanism, with (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c., followed by the decay K*-> K pi and a further fusion of K (K) over bar into the f(0)(980) or a(0)(980). We show that the mechanism develops a singularity around the pi(0)f(0)(980) or pi(0)a(0)(980) invariant mass of 1420 MeV, where the pi(0)f(0) and pi(0)a(0) decay modes are magnified and also the ratio of pi(0)f(0) to pi(0)a(0) production. Using experimental information for the (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c. decay, we are able to obtain absolute values for the reactions studied which fall into the experimentally accessible range. The reactions proposed and the observables evaluated, when contrasted with actual experiments, should be very valuable to obtain information on the nature of the low lying scalar mesons.
|
|
|
Sakai, S., Oset, E., & Guo, F. K. (2020). Triangle singularity in the B-> K- pi X-0 (3872) reaction and sensitivity to the X(3872) mass. Phys. Rev. D, 101(5), 054030–10pp.
Abstract: We have done a study of the B--> K-pi X-0(3872) reaction by means of a triangle mechanism via the chain of reactions: B--> K-D*(0);(D) over bar*(0); D*(0)-> pi D-0(0); D-0(D) over bar*(0)-> X(3872). We show that this mechanism generates a triangle singularity in the pi X-0(3872) invariant mass for a very narrow window of the X(3872) mass, around the present measured values, and show that the peak positions and the shape of the mass distributions arc sensitive to the X(3872) mass, such that a measurement of the reaction can serve to improve on the present values of this mass. In particular, we point out that the X(3872) mass relative to the D-0(D) over bar*(0) threshold may be extracted from the asymmetry of the pi X-0 line shape.
|
|