Bayar, M., Pavao, R., Sakai, S., & Oset, E. (2018). Role of the triangle singularity in Lambda(1405) production in the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma processes. Phys. Rev. C, 97(3), 035203–12pp.
Abstract: We have investigated the cross section for the pi(-) p -> K-0 pi Sigma and pp -> pK(+) pi Sigma reactions, paying attention to a mechanism that develops a triangle singularity. The triangle diagram is realized by the decay of a N* to K* Sigma and the K* decay into pi K, and the pi Sigma finally merges into Lambda (1405). The mechanism is expected to produce a peak around 2140 MeV in the K Lambda (1405) invariant mass. We found that a clear peak appears around 2100 MeV in the K Lambda (1405) invariant mass, which is about 40 MeV lower than the expectation, and that is due to the resonance peak of a N* resonance which plays a crucial role in the K* Sigma production. The mechanism studied produces the peak of the Lambda (1405) around or below 1400 MeV, as is seen in the pp -> pK(+) pi Sigma HADES experiment.
|
Dai, L. R., Pavao, R., Sakai, S., & Oset, E. (2019). tau(-) -> nu tau M1 M2, with M1, M2 pseudoscalar or vector mesons. Eur. Phys. J. A, 55(2), 20–22pp.
Abstract: .We perform a calculation of the -M1M2, with M1,M2 either pseudoscalar or vector mesons using the basic weak interaction and angular momentum algebra to relate the different processes. The formalism also leads to a different interpretation of the role played by G-parity in these decays. We also observe that, while PPp-wave production is compatible with chiral perturbation theory and experiment, VP and VVp-wave production is clearly incompatible with experiment and we develop the formalism also in this case, producing the VP or VV pairs in s-wave. We compare our results with experiment and other theoretical approaches for rates and invariant mass distributions and make predictions for unmeasured decays. We show the value of these reactions, particularly if the M1M2 mass distribution is measured, as a tool to learn about the meson-meson interaction and the nature of some resonances, coupling to two mesons, which are produced in such decays.
|
Dai, L. R., Pavao, R., Sakai, S., & Oset, E. (2018). Anomalous enhancement of the isospin-violating Lambda(1405) production by a triangle singularity in Lambda(c) ->pi(+)pi(0)pi(0)Sigma(0). Phys. Rev. D, 97(11), 116004–10pp.
Abstract: The decay of Lambda(+)(c) into pi(+)pi(0) Lambda(1405) with the Lambda(1405) decay into pi(0)Sigma(0) through a triangle diagram is studied. This process is initiated by Lambda(+)(c) -> pi(+) (K) over bar N-*, and then the (K) over bar (*) decays into (K) over bar (pi) and (K) over bar N produce the Lambda(1405) through a triangle loop containing (K) over bar N-* (K) over bar which develops a singularity around 1890 MeV. This process is prohibited by the isospin symmetry, but the decay into this channel is enhanced by the contribution of the triangle diagram, which is sensitive to the mass of the internal particles. We find a narrow peak in the pi(0)Sigma(0) invariant mass distribution, which originates from the (K) over bar amplitude, but is tied to the mass differences between the charged and neutral (K) over bar or N states. The observation of the unavoidable peak of the triangle singularity in the isospin- violating Lambda(1405) production would provide further support for the hadronic molecular picture of the Lambda(1405) and further information on the (K) over bar N interaction.
|
Debastiani, V. R., Sakai, S., & Oset, E. (2019). Considerations on the Schmid theorem for triangle singularities. Eur. Phys. J. C, 79(1), 69–13pp.
Abstract: We investigate the Schmid theorem, which states that if one has a tree level mechanism with a particle decaying to two particles and one of them decaying posteriorly to two other particles, the possible triangle singularity developed by the mechanism of elastic rescattering of two of the three decay particles does not change the cross section provided by the tree level. We investigate the process in terms of the width of the unstable particle produced in the first decay and determine the limits of validity and violation of the theorem. One of the conclusions is that the theorem holds in the strict limit of zero width of that resonance, in which case the strength of the triangle diagram becomes negligible compared to the tree level. Another conclusion, on the practical side, is that for realistic values of the width, the triangle singularity can provide a strength comparable or even bigger than the tree level, which indicates that invoking the Schmid theorem to neglect the triangle diagram stemming from elastic rescattering of the tree level should not be done. Even then, we observe that the realistic case keeps some memory of the Schmid theorem, which is visible in a peculiar interference pattern with the tree level.
|
Debastiani, V. R., Sakai, S., & Oset, E. (2017). Role of a triangle singularity in the pi N(1535) contribution to gamma p -> p pi(0) eta. Phys. Rev. C, 96(2), 025201–7pp.
Abstract: We have studied the gamma p -> p pi(0) eta reaction paying attention to the two main mechanisms at low energies, the gamma p ->Delta(1700) -> eta Delta(1232) and the gamma p -> Delta(1700) -> pi N(1535). Both are driven by the photoexcitation of the Delta (1700) and the second one involves a mechanism that leads to a triangle singularity. We are able to evaluate quantitatively the cross section for this process and show that it agrees with the experimental determination. Yet there are some differences with the standard partial wave analysis which does not include explicitly the triangle singularity. The exercise also shows the convenience of exploring possible triangle singularities in other reactions and how a standard partial wave analysis can be extended to accommodate them.
|
Dias, J. M., Debastiani, V. R., Roca, L., Sakai, S., & Oset, E. (2017). Binding of the BD(D)over-bar and BDD systems. Phys. Rev. D, 96(9), 094007–6pp.
Abstract: We study theoretically the BD (D) over bar and BDD systems to see if they allow for possible bound or resonant states. The three-body interaction is evaluated implementing the fixed center approximation to the Faddeev equations which considers the interaction of a D or (D) over bar particle with the components of a BD cluster, previously proved to form a bound state. We find an I(J(P)) = 1/2(0(-)) bound state for the BD (D) over bar system at an energy around 8925-8985 MeV within uncertainties, which would correspond to a bottom hidden-charm meson. In contrast, for the BDD system, which would be bottom double-charm and hence manifestly exotic, we have found hints of a bound state in the energy region 8935-8985 MeV, but the results are not stable under the uncertainties of the model, and we cannot assure, nor rule out, the possibility of a BDD three-body state.
|
Dias, J. M., Roca, L., & Sakai, S. (2018). Prediction of new states from D(*)B(*)(B)over-bar(*) three-body interactions. Phys. Rev. D, 97(5), 056019–8pp.
Abstract: We study three-body systems composed of D(*), B(*), and (B) over bar(*) in order to look for possible bound states or resonances. In order to solve the three-body problem, we use the fixed center approach for the Faddeev equations considering that the B*(B) over bar*(B (B) over bar) are clusterized systems, generated dynamically, which interact with a third particle D((D) over bar) whose mass is much smaller than the two-body bound states forming the cluster. In the DB*(B) over bar*, D*B*(B) over bar*, DB (B) over bar, and D*B (B) over bar systems with I = 1/2, we found clear bound state peaks with binding energies typically a few tens MeV and more uncertain broad resonant states about ten MeV above the threshold with widths of a few tens MeV.
|
Jiang, S. J., Sakai, S., Liang, W. H., & Oset, E. (2019). The chi c J decay to phi K*(K)over-bar, phi h(1)(1380) testing the nature of axial vector meson resonances. Phys. Lett. B, 797, 134831–5pp.
Abstract: We perform a theoretical study of the chi(cJ) -> phi K*(K) over bar -> phi K pi(K) over bar reaction taking into account the K*(K) over bar final state interaction, which in the chiral unitary approach is responsible, together with its coupled channels, for the formation of the low lying axial vector mesons, in this case the h(1)(1380) given the selection of quantum numbers. Based on this picture we can easily explain why in the chi(c0) decay the h(1)(1380) resonance is not produced, and, in the case of chi(c1) and chi(c2) decay, why a dip in the K+ pi K-0(-) mass distribution appears in the 1550-1600 MeV region, that in our picture comes from a destructive interference between the tree level mechanism and the rescattering that generates the h(1)(1380) state. Such a dip is not reproduced in pictures where the nominal h(1)(1380) signal is added incoherently to a background, which provides support to the picture where the resonance appears from rescattering of vector-pseudoscalar components.
|
Liang, W. H., Sakai, S., & Oset, E. (2019). Theoretical description of the J/psi -> eta(eta ')h(1)(1380), J/psi -> eta(eta ')h(1)(1170) and J/psi -> pi(0)b(1) (1235)(0) reactions. Phys. Rev. D, 99(9), 094020–10pp.
Abstract: We have made a study of the J/psi -> eta'h(1), eta h(1) [with h(1) being /11(1170) and h(1)(1380)1 and P/psi ->pi(0)b(1) 171(1235)(0) assuming the axial vector mesons to be dynamically generated from the pseudoscalar-vectormeson interaction. We have taken the needed input from previous studies of the J/psi -> phi pi pi, omega pi pi reactions. We obtain fair agreement with experimental data and provide an explanation on why the recent experiment on J/psi -> eta'h(1)(1380), h(1)(1380) -> K*K-+(-) + c.c. observed in the K+K-pi(0) mode observes the peak of the h(1)(1380) at a higher energy than its nominal mass.
|
Liang, W. H., Sakai, S., Xie, J. J., & Oset, E. (2018). Triangle singularity enhancing isospin violation in (B)over-bar(s)(0)-> J/psi pi(0)f(0)(980). Chin. Phys. C, 42(4), 044101–9pp.
Abstract: We perform calculations for the (B) over bar (0)(s)-> J/psi pi(0)f(0)(980) and (B) over bar (0)(s)-> J/psi pi(0)a(0)(980) reactions, showing that the first is isospin-suppressed while the second is isospin-allowed. The reaction proceeds via a triangle mechanism, with (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c., followed by the decay K*-> K pi and a further fusion of K (K) over bar into the f(0)(980) or a(0)(980). We show that the mechanism develops a singularity around the pi(0)f(0)(980) or pi(0)a(0)(980) invariant mass of 1420 MeV, where the pi(0)f(0) and pi(0)a(0) decay modes are magnified and also the ratio of pi(0)f(0) to pi(0)a(0) production. Using experimental information for the (B) over bar (0)(s)-> J/psi K*(K) over bar +c.c. decay, we are able to obtain absolute values for the reactions studied which fall into the experimentally accessible range. The reactions proposed and the observables evaluated, when contrasted with actual experiments, should be very valuable to obtain information on the nature of the low lying scalar mesons.
|