|
AGATA Collaboration(Sahin, E. et al), Gadea, A., & Huyuk, T. (2015). Shell evolution beyond N=40: Cu-69,Cu-71,Cu-73. Phys. Rev. C, 91(3), 034302–9pp.
Abstract: The level structure of the neutron-rich Cu-69, Cu-71, and Cu-73 isotopes has been investigated by means of multinucleon transfer reactions. The experiment was performed at Laboratori Nazionali di Legnaro using the AGATA Demonstrator array coupled to the PRISMA magnetic spectrometer. Lifetimes of excited states in Cu nuclei were measured with the recoil-distance Doppler-shift method. The resulting electromagnetic matrix elements for transitions from excited states in Cu-69,Cu-71,Cu-73 nuclei are used to assess the collective or single-particle character of these states. The results are compared with predictions of large-scale shell-model calculations, giving further insight into the evolution of the proton pf shell as neutrons fill the 1g(9/2) orbital.
|
|
|
Bizzeti, P. G., Sona, P., Michelagnoli, C., Melon, B., Bazzacco, D., Farnea, E., et al. (2015). Analyzing power of AGATA triple clusters for gamma-ray linear polarization. Eur. Phys. J. A, 51(4), 49–11pp.
Abstract: We have investigated the ability of AGATA triple clusters to measure the linear polarization of gamma rays, exploiting the azimuthal-angle dependence of the Compton scattering differential cross section. To this aim, partially polarized gamma rays have been produced by Coulomb excitation of the first excited state of Pd-104 and Pd-108, which decay to the ground state by emission of gamma rays of 555.8 keV and 433.9 keV, respectively. Pulse-shape analysis and gamma-ray tracking techniques have been used to determine the position and time sequence of the interaction points inside the germanium crystals. Anisotropies in the detection efficiency have been taken into account using 661.6 keV gammas from a Cs-137 radioactive source. We obtain an average analyzing power of 0.451(34) at 433.9 keV and 0.484(24) at 555.8 keV.
|
|
|
Goasduff, A., Valiente-Dobon, J. J., Lunardi, S., Haas, F., Gadea, A., de Angelis, G., et al. (2014). Counting rate measurements for lifetime experiments using the RDDS method with the new generation gamma-ray array AGATA. Nucl. Instrum. Methods Phys. Res. A, 758, 1–3.
Abstract: The differential Recoil Distance Doppler Shift (RDDS) method after multinucleon transfer (MNT) reactions to measure lifetimes of excited states in neutron-rich nuclei requires the use of a thick energy degrader for the recoiling ejectiles that are then detected in a spectrometer. This type of measurements greatly benefits from the use of the new generation segmented gamma-ray detectors, such as the AGATA demonstrator which offers unprecedented energy and angular resolutions. In order to make an optimized choice of the material and the thickness of the degrader for lifetime measurements using the RODS method after MNT, an experiment has been performed with the AGATA demonstrator. Counting rate measurements for different degraders are presented.
|
|
|
Sahin, E. et al, Gadea, A., & Algora, A. (2012). Structure of the N=50 As, Ge, Ga nuclei. Nucl. Phys. A, 893, 1–12.
Abstract: The level structures of the N = 50 As-83, Ge-82, and Ga-81 isotones have been investigated by means of multi-nucleon transfer reactions. A first experiment was performed with the CLARA PRISMA setup to identify these nuclei. A second experiment was carried out with the GASP array in order to deduce the gamma-ray coincidence information. The results obtained on the high-spin states of such nuclei are used to test the stability of the N = 50 shell closure in the region of Ni-78 (Z = 28). The comparison of the experimental level schemes with the shell-model calculations yields an N = 50 energy gap value of 4.7(3) MeV at Z = 28. This value, in a good agreement with the prediction of the finite-range liquid-drop model as well as with the recent large-scale shell model calculations, does not support a weakening of the N = 50 shell gap down to Z = 28.
Keywords: NUCLEAR REACTIONS U-238(Se-82, Ga-81), (Se-82, Ge-82), (Se-82, As-83), E=515 MeV; measured E-gamma, I-gamma (theta), gamma gamma-coin, reaction fragments, (fragment)gamma-coin using PRISMA magnetic spectrometer, gamma after deexcitation using Ge Compton-suppressed detectors of CLARA array, thin and thick target; deduced sigma(theta), levels, J, pi; calculated levels, J, pi using shell model
|
|