Doring, M., Meissner, U. G., Oset, E., & Rusetsky, A. (2012). Scalar mesons moving in a finite volume and the role of partial wave mixing. Eur. Phys. J. A, 48(8), 114–18pp.
Abstract: Phase shifts and resonance parameters can be obtained from finite-volume lattice spectra for interacting pairs of particles, moving with non-zero total momentum. We present a simple derivation of the method that is subsequently applied to obtain the pi pi and pi K phase shifts in the sectors with total isospin I – 0 and I – 1/2, respectively. Considering different total momenta, one obtains extra data points for a given volume that allow for a very efficient extraction of the resonance parameters in the infinite-volume limit. Corrections due to the mixing of partial waves are provided. We expect that our results will help to optimize the strategies in lattice simulations, which aim at an accurate determination of the scattering and resonance properties.
|
Doring, M., Meissner, U. G., Oset, E., & Rusetsky, A. (2011). Unitarized Chiral Perturbation Theory in a finite volume: Scalar meson sector. Eur. Phys. J. A, 47(11), 139–15pp.
Abstract: We develop a scheme for the extraction of the properties of the scalar mesons f(0)(600), f(0)(980), and a(0)(980) from lattice QCD data. This scheme is based on a two-channel chiral unitary approach with fully relativistic propagators in a finite volume. In order to discuss the feasibility of finding the mass and width of the scalar resonances, we analyze synthetic lattice data with a fixed error assigned, and show that the framework can be indeed used for an accurate determination of resonance pole positions in the multichannel scattering.
|
Garofalo, M., Romero-Lopez, F., Rusetsky, A., & Urbach, C. (2021). Testing a new method for scattering in finite volume in the phi(4) theory. Eur. Phys. J. C, 81(11), 1034–5pp.
Abstract: We test an alternative proposal by Bruno and Hansen (J High Energy Phys 2021(6), https://doi.org/10.1007/JHEP06(2021)043, 2021) to extract the scattering length from lattice simulations in a finite volume. For this, we use a scalar phi(4) theory with two mass nondegenerate particles and explore various strategies to implement this new method. We find that the results are comparable to those obtained from the Luscher method, with somewhat smaller statistical uncertainties at larger volumes.
|
Romero-Lopez, F., Rusetsky, A., Schlage, N., & Urbach, C. (2021). Relativistic N-particle energy shift in finite volume. J. High Energy Phys., 02(2), 060–52pp.
Abstract: We present a general method for deriving the energy shift of an interacting system of N spinless particles in a finite volume. To this end, we use the nonrelativistic effective field theory (NREFT), and match the pertinent low-energy constants to the scattering amplitudes. Relativistic corrections are explicitly included up to a given order in the 1/L expansion. We apply this method to obtain the ground state of N particles, and the first excited state of two and three particles to order L-6 in terms of the threshold parameters of the two- and three-particle relativistic scattering amplitudes. We use these expressions to analyze the N-particle ground state energy shift in the complex phi (4) theory.
|
Romero-Lopez, F., Rusetsky, A., & Urbach, C. (2018). Two- and three-body interactions in phi 4 theory from lattice simulations. Eur. Phys. J. C, 78(10), 846–15pp.
Abstract: We calculate the one-, two- and three-particle energy levels for different lattice volumes in the complex phi(4) theory on the lattice. We argue that the exponentially suppressed finite-volume corrections for the two- and three-particle energy shifts can be reduced significantly by using the single particle mass, which includes the finite-size effects. We show numerically that, for a set of bare parameters, corresponding to the weak repulsive interaction, one can reliably extract the two- and three-particle energy shifts. From those, we extract the scattering length, the effective range and the effective three-body coupling. We show that the parameters, extracted from the two- and three-particle energy shifts, are consistent. Moreover, the effective three-body coupling is significantly different from zero.
|