An, L., Auffray, E., Betti, F., Dall'Omo, F., Gascon, D., Golutvin, A., et al. (2023). Performance of a spaghetti calorimeter prototype with tungsten absorber and garnet crystal fibres. Nucl. Instrum. Methods Phys. Res. A, 1045, 167629–7pp.
Abstract: A spaghetti calorimeter (SPACAL) prototype with scintillating crystal fibres was assembled and tested with electron beams of energy from 1 to 5 GeV. The prototype comprised radiation-hard Cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) and Y3Al5O12 (YAG:Ce) embedded in a pure tungsten absorber. The energy resolution root was studied as a function of the incidence angle of the beam and found to be of the order of 10%/ E a 1%, in line with the LHCb Shashlik technology. The time resolution was measured with metal channel dynode photomultipliers placed in contact with the fibres or coupled via a light guide, additionally testing an optical tape to glue the components. Time resolution of a few tens of picosecond was achieved for all the energies reaching down to (18.5 +/- 0.2) ps at 5 GeV.
|
Boronat, M., Fuster, J., Garcia, I., Roloff, P., Simoniello, R., & Vos, M. (2018). Jet reconstruction at high-energy electron-positron colliders. Eur. Phys. J. C, 78(2), 144–16pp.
Abstract: In this paper we study the performance in e(+)e(-) collisions of classical e(+)e(-) jet reconstruction algorithms, longitudinally invariant algorithms and the recently proposed Valencia algorithm. The study includes a comparison of perturbative and non-perturbative jet energy corrections and the response under realistic background conditions. Several algorithms are benchmarked with a detailed detector simulation at root s = 3 TeV. We find that the classical e(+)e(-) algorithms, with or without beam jets, have the best response, but they are inadequate in environments with non-negligible background. The Valencia algorithm and longitudinally invariant k(t) algorithms have a much more robust performance, with a slight advantage for the former.
|