Aliberti, R. et al, Miramontes, A., Rodriguez-Sanchez, A., Roig, P., & Pich, A. (2025). The anomalous magnetic moment of the muon in the Standard Model: an update. Phys. Rep., 1143, 1–158.
Abstract: We present the current Standard Model (SM) prediction for the muon anomalous magnetic moment, a mu, updating the first White Paper (WP20) [1]. The pure QED and electroweak contributions have been further consolidated, while hadronic contributions continue to be responsible for the bulk of the uncertainty of the SM prediction. Significant progress has been achieved in the hadronic light-by-light scattering contribution using both the data-driven dispersive approach as well as lattice-QCD calculations, leading to a reduction of the uncertainty by almost a factor of two. The most important development since WP20 is the change in the estimate of the leading-order hadronicvacuum-polarization (LO HVP) contribution. A new measurement of the e+e--> pi+pi- cross section by CMD-3 has increased the tensions among data-driven dispersive evaluations of the LO HVP contribution to a level that makes it impossible to combine the results in a meaningful way. At the same time, the attainable precision of lattice-QCD calculations has increased substantially and allows for a consolidated lattice-QCD average of the LO HVP contribution with a precision of about 0.9%. Adopting the latter in this update has resulted in a major upward shift of the total SM prediction, which now reads aSM μ= 116592033(62) x 10-11 (530 ppb). When compared against the current experimental average based on the E821 experiment and runs 1-6 of E989 at Fermilab, one finds aexp μ- aSM μthe SM and experiment at the current level of precision. The final precision of E989 (127 ppb) is the target of future efforts by the Theory Initiative. The resolution of the tensions among data-driven dispersive evaluations of the LO HVP contribution will be a key element in this endeavor.
|
Bijnens, J., Hermansson-Truedsson, N., & Rodriguez-Sanchez, A. (2025). Constraints on the hadronic light-by-light tensor in corner kinematics for the muon g-2. J. High Energy Phys., 03(3), 094–36pp.
Abstract: The dispersive approach to the hadronic light-by-light contribution to the muon g – 2 involves an integral over three virtual photon momenta appearing in the light-by-light tensor. Building upon previous works, we systematically derive short-distance constraints in the region where two momenta are large compared to the third, the so-called Melnikov-Vainshtein or corner region. We include gluonic corrections for the different scalar functions appearing in the Lorentz decomposition of the underlying tensor, and explicitly check analytic agreement with alternative operator product expansions in overlapping regimes of validity. A very strong pattern of cancellations is observed for the final g – 2 integrand. The last observation suggests that a very compact expression only containing the axial current form factors can provide a good approximation of the corner region of the hadronic light-by-light tensor.
|
Cirigliano, V., Diaz-Calderon, D., Falkowski, A., Gonzalez-Alonso, M., & Rodriguez-Sanchez, A. (2022). Semileptonic tau decays beyond the Standard Model. J. High Energy Phys., 04(4), 152–61pp.
Abstract: Hadronic tau decays are studied as probe of new physics. We determine the dependence of several inclusive and exclusive tau observables on the Wilson coefficients of the low-energy effective theory describing charged-current interactions between light quarks and leptons. The analysis includes both strange and non-strange decay channels. The main result is the likelihood function for the Wilson coefficients in the tau sector, based on the up-to-date experimental measurements and state-of-the-art theoretical techniques. The likelihood can be readily combined with inputs from other low-energy precision observables. We discuss a combination with nuclear beta, baryon, pion, and kaon decay data. In particular, we provide a comprehensive and model-independent description of the new physics hints in the combined dataset, which are known under the name of the Cabibbo anomaly.
|
Cirigliano, V., Falkowski, A., Gonzalez-Alonso, M., & Rodriguez-Sanchez, A. (2019). Hadronic tau Decays as New Physics Probes in the LHC Era. Phys. Rev. Lett., 122(22), 221801–7pp.
Abstract: We analyze the sensitivity of hadronic tau decays to nonstandard interactions within the model-independent framework of the standard model effective field theory. Both exclusive and inclusive decays are studied, using the latest lattice data and QCD dispersion relations. We show that there are enough theoretically clean channels to disentangle all the effective couplings contributing to these decays, with the tau -> pi pi nu(tau) channel representing an unexpected powerful new physics probe. We find that the ratios of nonstandard couplings to the Fermi constant are bound at the subpercent level. These bounds are complementary to the ones from electroweak precision observables and pp -> tau nu(tau) measurements at the LHC. The combination of tau decay and LHC data puts tighter constraints on lepton universality violation in the gauge boson-lepton vertex corrections.
|
Cirigliano, V., Gisbert, H., Pich, A., & Rodriguez-Sanchez, A. (2020). Isospin-violating contributions to epsilon '/epsilon. J. High Energy Phys., 02(2), 032–44pp.
Abstract: The known isospin-breaking contributions to the K -> pi pi amplitudes are reanalyzed, taking into account our current understanding of the quark masses and the relevant non-perturbative inputs. We present a complete numerical reappraisal of the direct CP-violating ratio is an element of(')/is an element of, where these corrections play a quite significant role. We obtain the Standard Model prediction Re (is an element of(')/is an element of) = (14 +/- 5) <bold> </bold>10(-4), which is in very good agreement with the measured ratio. The uncertainty, which has been estimated conservatively, is dominated by our current ignorance about 1/N-C-suppressed contributions to some relevant chiral-perturbation-theory low-energy constants.
|
Davier, M., Diaz-Calderon, D., Malaescu, B., Pich, A., Rodriguez-Sanchez, A., & Zhang, Z. (2023). The Euclidean Adler function and its interplay with Delta alpha(had)(QED) and alpha(s). J. High Energy Phys., 04(4), 067–57pp.
Abstract: Three different approaches to precisely describe the Adler function in the Euclidean regime at around 2 GeVs are available: dispersion relations based on the hadronic production data in e(+)e(-) annihilation, lattice simulations and perturbative QCD (pQCD). We make a comprehensive study of the perturbative approach, supplemented with the leading power corrections in the operator product expansion. All known contributions are included, with a careful assessment of uncertainties. The pQCD predictions are compared with the Adler functions extracted from ?a( QED)(had)(Q(2)), using both the DHMZ compilation of e(+)e(-) data and published lattice results. Taking as input the FLAG value of a(s), the pQCD Adler function turns out to be in good agreement with the lattice data, while the dispersive results lie systematically below them. Finally, we explore the sensitivity to a(s) of the direct comparison between the data-driven, lattice and QCD Euclidean Adler functions. The precision with which the renormalisation group equation can be tested is also evaluated.
|
Falkowski, A., Gonzalez-Alonso, M., Palavric, A., & Rodriguez-Sanchez, A. (2024). Constraints on subleading interactions in beta decay Lagrangian. J. High Energy Phys., 02(2), 091–54pp.
Abstract: We discuss the effective field theory (EFT) for nuclear beta decay. The general quark-level EFT describing charged-current interactions between quarks and leptons is matched to the nucleon-level non-relativistic EFT at the OMeV momentum scale characteristic for beta transitions. The matching takes into account, for the first time, the effect of all possible beyond-the-Standard-Model interactions at the subleading order in the recoil momentum. We calculate the impact of all the Wilson coefficients of the leading and subleading EFT Lagrangian on the differential decay width in allowed beta transitions. As an example application, we show how the existing experimental data constrain the subleading Wilson coefficients corresponding to pseudoscalar, weak magnetism, and induced tensor interactions. The data display a 3.5 sigma evidence for nucleon weak magnetism, in agreement with the theory prediction based on isospin symmetry.
|
Gonzalez-Alonso, M., Pich, A., & Rodriguez-Sanchez, A. (2016). Updated determination of chiral couplings and vacuum condensates from hadronic tau decay data. Phys. Rev. D, 94(1), 014017–14pp.
Abstract: We analyze the lowest spectral moments of the left-right two-point correlation function, using all known short-distance constraints and the recently updated ALEPH V – A spectral function from tau decays. This information is used to determine the low-energy couplings L-10 and C-87 of chiral perturbation theory and the lowest-dimensional contributions to the operator product expansion of the left-right correlator. A detailed statistical analysis is implemented to assess the theoretical uncertainties, including violations of quark-hadron duality.
|
Goyal, N. et al, Gonzalez-Alonso, M., & Rodriguez-Sanchez, A. (2025). Performance of the MORA apparatus for testing time-reversal invariance in nuclear beta decay. Eur. Phys. J. A, 61(10), 221–20pp.
Abstract: The MORA experimental setup is designed to measure the triple-correlation D parameter in the nuclear beta decay of trapped and polarized 23Mg+ and 39Ca+ ions. The D coefficient is sensitive to potential violations of time-reversal invariance – and, via the CPT theorem, to CP violation. The experimental configuration consists of a transparent Paul trap surrounded by a detection setup with alternating beta and recoil-ion detectors. The octagonal symmetry of the detection setup optimizes the sensitivity of positron-recoil-ion coincidence rates to the D correlation, while reducing systematic effects. MORA utilizes an innovative in-trap laser polarization technique. The design and performance of the ion trap and associated optics, lasers and beta and detection system are presented. The recent experimental demonstration of the polarization technique is described.
|
Pich, A., & Rodriguez-Sanchez, A. (2022). Violations of quark-hadron duality in low-energy determinations of alpha(s). J. High Energy Phys., 07(7), 145–42pp.
Abstract: Using the spectral functions measured in tau decays, we investigate the actual numerical impact of duality violations on the extraction of the strong coupling. These effects are tiny in the standard alpha(s)(m(tau)(2)) determinations from integrated distributions of the hadronic spectrum with pinched weights, or from the total tau hadronic width. The pinched-weight factors suppress very efficiently the violations of duality, making their numerical effects negligible in comparison with the larger perturbative uncertainties. However, combined fits of alpha(s) and duality-violation parameters, performed with non-protected weights, are subject to large systematic errors associated with the assumed modelling of duality-violation effects. These uncertainties have not been taken into account in the published analyses, based on specific models of quark-hadron duality.
|