|
Arbelaez, C., Hirsch, M., & Restrepo, D. (2017). Fermionic triplet dark matter in an SO(10)-inspired left-right model. Phys. Rev. D, 95(9), 095034–9pp.
Abstract: We study a left right (LR) extension of the Standard Model (SM) where the Dark Matter(DM) candidate is composed of a set of fermionic Majorana triplets. The DM is stabilized by a remnant Z(2) symmetry from the breaking of the LR group to the SM. Two simple scenarios where the DM particles plus a certain set of extra fields lead to gauge coupling unification with a low LR scale are explored. The constraints from relic density and predictions for direct detection are discussed for both scenarios. The first scenario with a SUd(2)(R) vectorlike fermion triplet contains a DM candidate which is almost unconstrained by current direct detection experiments. The second scenario, with an additional SU(2)R triplet, opens up a scalar portal leading to direct detection constraints which are similar to collider limits for right gauge bosons. The DM parameter space consistent with phenomenological requirements can also lead to successful gauge coupling unification in a SO(10) setup.
|
|
|
Aristizabal Sierra, D., Herrero-Garcia, J., Restrepo, D., & Vicente, A. (2016). Diboson anomaly: Heavy Higgs resonance and QCD vectorlike exotics. Phys. Rev. D, 93(1), 015012–12pp.
Abstract: The ATLAS Collaboration (and also CMS) has recently reported an excess over Standard Model expectations for gauge boson pair production in the invariant mass region 1.8-2.2 TeV. In light of these results, we argue that such a signal might be the first manifestation of the production and further decay of a heavy CP-even Higgs resulting from a type-I two Higgs doublet model. We demonstrate that in the presence of colored vectorlike fermions, its gluon fusion production cross section is strongly enhanced, with the enhancement depending on the color representation of the new fermion states. Our findings show that barring the color triplet case, any QCD “exotic” representation can fit the ATLAS result in fairly large portions of the parameter space. We have found that if the diboson excess is confirmed and this mechanism is indeed responsible for it, then the LHC Run-2 should find (i) a CP-odd scalar with mass below similar to 2.3 TeV, (ii) new colored states with masses below similar to 2 TeV, (iii) no statistically significant diboson events in the W(+/-)Z channel, (iv) events in the triboson channels W(+/-)W(-/+)Z and ZZZ with invariant mass amounting to the mass of the CP-odd scalar.
|
|
|
Campos, F., Eboli, O. J. P., Magro, M. B., Porod, W., Restrepo, D., Das, S. P., et al. (2012). Probing neutralino properties in minimal supergravity with bilinear R-parity violation. Phys. Rev. D, 86(7), 075001–8pp.
Abstract: Supersymmetric models with bilinear R-parity violation can account for the observed neutrino masses and mixing parameters indicated by neutrino oscillation data. We consider minimal supergravity versions of bilinear R-parity violation where the lightest supersymmetric particle is a neutralino. This is unstable, with a large enough decay length to be detected at the CERN Large Hadron Collider. We analyze the Large Hadron Collider potential to determine the lightest supersymmetric particle properties, such as mass, lifetime and branching ratios, and discuss their relation to neutrino properties.
|
|
|
de Campos, F., Eboli, O. J. P., Hirsch, M., Magro, M. B., Porod, W., Restrepo, D., et al. (2010). Probing neutrino oscillations in supersymmetric models at the Large Hadron Collider. Phys. Rev. D, 82(7), 075002–8pp.
Abstract: The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
|
|
|
Reig, M., Restrepo, D., Valle, J. W. F., & Zapata, O. (2019). Bound-state dark matter with Majorana neutrinos. Phys. Lett. B, 790, 303–307.
Abstract: We propose a simple scenario in which dark matter (DM) emerges as a stable neutral hadronic thermal relic, its stability following from an exact U(1)(D) symmetry. Neutrinos pick up radiatively induced Majorana masses from the exchange of colored DM constituents. There is a common origin for both dark matter and neutrino mass, with a lower bound for neutrinoless double beta decay. Direct DM searches at nuclear recoil experiments will test the proposal, which may also lead to other phenomenological signals at future hadron collider and lepton flavor violation experiments.
|
|
|
Reig, M., Restrepo, D., Valle, J. W. F., & Zapata, O. (2018). Bound-state dark matter and Dirac neutrino masses. Phys. Rev. D, 97(11), 115032–5pp.
Abstract: We propose a simple theory for the idea that cosmological dark matter (DM) may be present today mainly in the form of stable neutral hadronic thermal relics. In our model, neutrino masses arise radiatively from the exchange of colored DM constituents, giving a common origin for both dark matter and neutrino mass. The exact conservation of B – L symmetry ensures dark matter stability and the Dirac nature of neutrinos. The theory can be falsified by dark matter nuclear recoil direct detection experiments, leading also to possible signals at a next generation hadron collider.
|
|
|
Restrepo, D., Taoso, M., Valle, J. W. F., & Zapata, O. (2012). Gravitino dark matter and neutrino masses with bilinear R-parity violation. Phys. Rev. D, 85(2), 023523–7pp.
Abstract: Bilinear R-parity violation provides an attractive origin for neutrino masses and mixings. In such schemes the gravitino is a viable decaying dark matter particle whose R-parity violating decays lead to monochromatic photons with rates accessible to astrophysical observations. We determine the parameter region allowed by gamma-ray line searches, dark matter relic abundance, and neutrino oscillation data, obtaining a limit on the gravitino mass m((G) over tilde) less than or similar to 1-10 GeV corresponding to a relatively low reheat temperature T-R less than or similar to few x 10(7)-10(8) GeV. Neutrino mass and mixing parameters may be reconstructed at accelerator experiments like the Large Hadron Collider.
|
|