|
Particle Data Group(Workman, R. L. et al), Hernandez-Rey, J. J., & Pich, A. (2022). Review of Particle Physics. Prog. Theor. Exp. Phys., 2022(8), 083C01–2270pp.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.
|
|
|
Particle Data Group(Zyla, P. A. et al), Hernandez-Rey, J. J., & Pich, A. (2020). Review of Particle Physics. Prog. Theor. Exp. Phys., 2020(8), 083C01–2093pp.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app.
|
|
|
Celis, A., Jung, M., Li, X. Q., & Pich, A. (2017). Scalar contributions to b -> c(u) tau nu transitions. Phys. Lett. B, 771, 168–179.
Abstract: We perform a comprehensive analysis of scalar contributions in b -> c tau nu transitions including the latest measurements of R(D-(*)), the q(2) differential distributions in B -> D-(*) tau nu the tau polarization asymmetry for B -> D*tau nu, and the bound derived from the total width of the B-c meson. We find that scalar contributions with the simultaneous presence of both left- and right-handed couplings to quarks can explain the available data, specifically R(D-(*)) together with the measured differential distributions. However, the constraints from the total B-c width present a slight tension with the current data on B -> D*tau nu in this scenario, preferring smaller values for R(D*). We discuss possibilities to disentangle scalar new physics from other new-physics scenarios like the presence of only a left-handed vector current, via additional observables in B -> D(*)tau nu decays or additional decay modes like the baryonic Lambda(b) -> Lambda(c)tau nu and the inclusive B -> X-c tau nu decays. We also analyze scalar contributions in b -> u tau nu transitions, including the latest measurements of B -> tau nu providing predictions for Lambda(b) -> p tau nu and B -> pi tau nu decays. The potential complementarity between the b -> u and b -> c sectors is finally investigated once assumptions about the flavour structure of the underlying theory are made.
|
|
|
Gomez Dumm, D., Roig, P., Pich, A., & Portoles, J. (2010). tau -> pi pi pi nu(tau) decays and the a(1)(1260) off-shell width revisited. Phys. Lett. B, 685(2-3), 158–164.
Abstract: The tau -> pi pi pi nu(tau) decay is driven by the hadronization of the axial-vector current. Within the resonance chiral theory, and considering the large-N-C expansion, this process has been studied in Ref. [1] (D. Gomez Dumm, A. Pich, J. Portoles, 2004). In the light of later developments we revise here this previous work by including a new off-shell width for the lightest a(1) resonance that provides a good description of the tau -> pi pi pi nu(tau) spectrum and branching ratio. We also consider the role of the rho(1450) resonance in these observables. Thus we bring in an overall description of the tau -> pi pi pi nu(tau) process in excellent agreement with our present experimental knowledge.
|
|
|
Antonelli, M. et al, Martinez-Vidal, F., & Pich, A. (2010). Flavor physics in the quark sector. Phys. Rep., 494(3-4), 197–414.
Abstract: In the past decade, one of the major challenges of particle physics has been to gain an in-depth understanding of the role of quark flavor. In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously. A much broader understanding of flavor particles has been achieved; apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions. Among the most interesting phenomena of flavor physics is the violation of the CP symmetry that has been subtle and difficult to explore. In the past, observations of CP violation were confined to neutral K mesons, but since the early 1990s, a large number of CP-violating processes have been studied in detail in neutral B mesons. In parallel, measurements of the couplings of the heavy quarks and the dynamics for their decays in large samples of K, D, and B mesons have been greatly improved in accuracy and the results are being used as probes in the search for deviations from the Standard Model. In the near future, there will be a transition from the current to a new generation of experiments; thus a review of the status of quark flavor physics is timely. This report is the result of the work of physicists attending the 5th CKM workshop, hosted by the University of Rome “La Sapienza”, September 9-13, 2008. It summarizes the results of the current generation of experiments that are about to be completed and it confronts these results with the theoretical understanding of the field which has greatly improved in the past decade.
|
|
|
Pich, A. (2021). Challenges for tau physics at the TeraZ. Eur. Phys. J. Plus, 136(11), 1117–8pp.
Abstract: The very high statistics, low backgrounds and clean back-to-back kinematics of a TeraZ facility would provide an optimal laboratory for precision measurements of the tau properties. A few important topics in tau physics where very relevant contributions could be made are highlighted.
|
|
|
Pich, A. (2021). Precision physics with inclusive QCD processes. Prog. Part. Nucl. Phys., 117, 103846–41pp.
Abstract: The inclusive production of hadrons through electroweak currents can be rigorously analysed with short-distance theoretical tools. The associated observables are insensitive to the involved infrared behaviour of the strong interaction, allowing for very precise tests of Quantum Chromodynamics. The theoretical predictions for sigma(e(+)e(-) -> hadrons) and the hadronic decay widths of the tau lepton and the Z, W and Higgs bosons have reached an impressive accuracy of O(alpha(4)(s)). Precise experimental measurements of the Z and tau hadronic widths have made possible the accurate determination of the strong coupling at two very different energy scales, providing a highly significant experimental verification of asymptotic freedom. A detailed discussion of the theoretical description of these processes and their current phenomenological status is presented. The most precise determinations of alpha(s) from other sources are also briefly reviewed and compared with the fully-inclusive results.
|
|
|
Pich, A., Rosell, I., & Sanz-Cillero, J. J. (2013). Viability of Strongly Coupled Scenarios with a Light Higgs-like Boson. Phys. Rev. Lett., 110(18), 181801–4pp.
Abstract: We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) circle times SU(2)(R) -> SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model.
|
|
|
Karan, A., Miralles, V., & Pich, A. (2024). Updated global fit of the aligned two-Higgs-doublet model with heavy scalars. Phys. Rev. D, 109(3), 035012–29pp.
Abstract: An updated global fit on the parameter-space of the aligned two-Higgs-doublet model is performed with the help of the open-source package HEPfit, assuming the Standard-Model Higgs to be the lightest scalar. No new sources of CP violation, other than the phase in the Cabibbo-Kobayashi-Maskawa matrix of the Standard Model, are considered. A similar global fit was previously performed by O. Eberhardt et al. [Global fits in the aligned two-Higgs-doublet model, J. High Energy Phys. 05 (2021) 005] with a slightly different set of parameters. Our updated fit incorporates improved analyses of the theoretical constraints required for the perturbative unitarity and boundedness of the scalar potential from below, additional flavor observables and updated data on direct searches for heavy scalars at the LHC, Higgs signal strengths, and electroweak precision observables. Although not included in the main fit, the implications of the CDF measurement of the W +/- mass are also discussed.
|
|
|
Pich, A., Platschorre, A., & Reig, M. (2023). Electroweak mass difference of mesons. Phys. Rev. D, 108(9), 094044–6pp.
Abstract: We consider electroweak gauge boson corrections to the masses of pseudoscalar mesons to next to leading order in alpha s and 1/NC. The pion mass shift induced by the Z boson is shown to be m pi +/- – m pi 0 = -0.00201(12) MeV. While being small compared to the electromagnetic mass shift, the prediction lies about a factor of similar to 4 above the precision of the current experimental measurement and a factor O(10) below the precision of current lattice calculations. This motivates future implementations of these electroweak gauge boson effects on the lattice. Finally, we consider beyond standard model contributions to the pion mass difference.
|
|