Pich, A., & Rodriguez-Sanchez, A. (2022). Violations of quark-hadron duality in low-energy determinations of alpha(s). J. High Energy Phys., 07(7), 145–42pp.
Abstract: Using the spectral functions measured in tau decays, we investigate the actual numerical impact of duality violations on the extraction of the strong coupling. These effects are tiny in the standard alpha(s)(m(tau)(2)) determinations from integrated distributions of the hadronic spectrum with pinched weights, or from the total tau hadronic width. The pinched-weight factors suppress very efficiently the violations of duality, making their numerical effects negligible in comparison with the larger perturbative uncertainties. However, combined fits of alpha(s) and duality-violation parameters, performed with non-protected weights, are subject to large systematic errors associated with the assumed modelling of duality-violation effects. These uncertainties have not been taken into account in the published analyses, based on specific models of quark-hadron duality.
|
Davier, M., Diaz-Calderon, D., Malaescu, B., Pich, A., Rodriguez-Sanchez, A., & Zhang, Z. (2023). The Euclidean Adler function and its interplay with Delta alpha(had)(QED) and alpha(s). J. High Energy Phys., 04(4), 067–57pp.
Abstract: Three different approaches to precisely describe the Adler function in the Euclidean regime at around 2 GeVs are available: dispersion relations based on the hadronic production data in e(+)e(-) annihilation, lattice simulations and perturbative QCD (pQCD). We make a comprehensive study of the perturbative approach, supplemented with the leading power corrections in the operator product expansion. All known contributions are included, with a careful assessment of uncertainties. The pQCD predictions are compared with the Adler functions extracted from ?a( QED)(had)(Q(2)), using both the DHMZ compilation of e(+)e(-) data and published lattice results. Taking as input the FLAG value of a(s), the pQCD Adler function turns out to be in good agreement with the lattice data, while the dispersive results lie systematically below them. Finally, we explore the sensitivity to a(s) of the direct comparison between the data-driven, lattice and QCD Euclidean Adler functions. The precision with which the renormalisation group equation can be tested is also evaluated.
|
Ferrando Solera, S., Pich, A., & Vale Silva, L. (2024). Direct bounds on Left-Right gauge boson masses at LHC Run 2. J. High Energy Phys., 02(2), 027–39pp.
Abstract: While the third run of the Large Hadron Collider (LHC) is ongoing, the underlying theory that extends the Standard Model remains so far unknown. Left-Right Models (LRMs) introduce a new gauge sector, and can restore parity symmetry at high enough energies. If LRMs are indeed realized in nature, the mediators of the new weak force can be searched for in colliders via their direct production. We recast existing experimental limits from the LHC Run 2 and derive generic bounds on the masses of the heavy LRM gauge bosons. As a novelty, we discuss the dependence of the WR and ZR total width on the LRM scalar content, obtaining model-independent bounds within the specific realizations of the LRM scalar sectors analysed here. These bounds avoid the need to detail the spectrum of the scalar sector, and apply in the general case where no discrete symmetry is enforced. Moreover, we emphasize the impact on the WR production at LHC of general textures of the right-handed quark mixing matrix without manifest left-right symmetry. We find that the WR and ZR masses are constrained to lie above 2 TeV and 4 TeV, respectively.
|
Coutinho, A. M., Karan, A., Miralles, V., & Pich, A. (2025). Light scalars within the CP-conserving Aligned-two-Higgs-doublet model. J. High Energy Phys., 02(2), 057–53pp.
Abstract: In this article we study the possibility that neutral and charged scalars lighter than the 125 GeV Higgs boson might exist within the framework of the CP-conserving Aligned-two-Higgs-doublet model. Depending on which new scalar (scalars) is (are) light, seven different scenarios may be considered. Using the open-source code HEPfit, which relies on Bayesian statistics, we perform global fits for all seven light-mass scenarios. The constraints arising from vacuum stability, perturbativity, electroweak precision observables, flavour observables, Higgs signal strengths, and direct-detection results at the LEP and the LHC are taken into account. Reinterpreted data from slepton searches are considered too. It turns out that the seven scenarios contain sizeable regions of their parameter space compatible with all current data. Although not included in the global fits, the possible implications of (g – 2)mu are also addressed.
|
Pich, A., & Rodriguez-Sanchez, A. (2016). Updated determination of alpha(s)(m(tau)(2)) from tau decays. Mod. Phys. Lett. A, 31(30), 1630032–15pp.
Abstract: Using the most recent release of the ALEPH tau decay data, we present a very detailed phenomenological update of the alpha(s)(m(tau)(2)) determination. We have exploited the sensitivity to the strong coupling in many different ways, exploring several complementary methodologies. All determinations turn out to be in excellent agreement, allowing us to extract a very reliable value of the strong coupling. We find alpha((nf =3))(s)(m(tau)(2)) = 0.328 +/- 0.012 which implies alpha((nf=5))(s)(M-Z(2)) = 0.1197 +/- 0.0014. We critically revise previous work, and point out the problems flawing some recent analyses which claim slightly smaller values.
|
Gonzalez-Alonso, M., Pich, A., & Prades, J. (2010). Pinched weights and duality violation in QCD sum rules: A critical analysis. Phys. Rev. D, 82(1), 014019–7pp.
Abstract: We analyze the so-called pinched weights, that are generally thought to reduce the violation of quarkhadron duality in finite-energy sum rules. After showing how this is not true in general, we explain how to address this question for the left-right correlator and any particular pinched weight, taking advantage of our previous work [1], where the possible high-energy behavior of the left-right spectral function was studied. In particular, we show that the use of pinched weights allows to determine with high accuracy the dimension six and eight contributions in the operator-product expansion, O-6 = (-4.3(-0.7)(+0.9)) x 10(-3) GeV6 and O-8 = (-7.2(-5.3)(+4.2)) x 10(-3) GeV8.
|
Gonzalez-Alonso, M., Pich, A., & Prades, J. (2010). Violation of quark-hadron duality and spectral chiral moments in QCD. Phys. Rev. D, 81(7), 074007–10pp.
Abstract: We analyze the spectral moments of the V – A two-point correlation function. Using all known short-distance constraints and the most recent experimental data from tau decays, we determine the lowest spectral moments, trying to assess the uncertainties associated with the so-called violations of quark-hadron duality. We have generated a large number of acceptable spectral functions, satisfying all conditions, and have used them to extract the wanted hadronic parameters through a careful statistical analysis. We obtain accurate values for the chi PT couplings L-10 and C-87, and a realistic determination of the dimension six and eight contributions in the operator product expansion, O-6 = (-5.4(-1.6)(+3.6)) . 10(-3) GeV6 and O-8 = d(-8.9-(12.6)(7.4+)) 10(-3) GeV8, showing that the duality-violation effects have been underestimated in previous literature.
|
Gomez Dumm, D., Roig, P., Pich, A., & Portoles, J. (2010). Hadron structure in tau -> KK pi nu(tau) decays. Phys. Rev. D, 81(3), 034031–17pp.
Abstract: We analyze the hadronization structure of both vector and axial-vector currents leading to tau -> KK pi nu(tau) decays. At leading order in the 1/N-C expansion, and considering only the contribution of the lightest resonances, we work out, within the framework of the resonance chiral Lagrangian, the structure of the local vertices involved in those processes. The couplings in the resonance theory are constrained by imposing the asymptotic behavior of vector and axial-vector spectral functions ruled by QCD. In this way we predict the hadron spectra and conclude that, contrary to previous assertions, the vector contribution dominates by far over the axial-vector one in all KK pi charge channels.
|
Jung, M., Pich, A., & Tuzon, P. (2011). B(bar) -> X_s gamma rate and CP asymmetry within the aligned two-Higgs-doublet model. Phys. Rev. D, 83(7), 074011–8pp.
Abstract: In the two-Higgs-doublet model the alignment of the Yukawa matrices in flavor space guarantees the absence of flavor-changing neutral currents at tree level, while introducing new sources for CP violation parametrized in a very economical way [Antonio Pich and Paula Tuzon, Phys. Rev. D 80, 091702 (2009)]. This implies a potentially large influence in a number of processes, b -> s gamma being a prominent example where rather high experimental and theoretical precision meet. We analyze the CP rate asymmetry in this inclusive decay and determine the resulting constraints on the model parameters. We demonstrate the compatibility with previously obtained limits [Martin Jung, Antonio Pich, and Paula Tuzon, J. High Energy Phys. 11 (2010) 003]. Moreover, we extend the phenomenological analysis of the branching ratio, and examine the influence of resulting correlations on the like-sign dimuon charge asymmetry in B decays.
|
Nieves, J., Pich, A., & Ruiz Arriola, E. (2011). Large-N(C) properties of the rho and f(0)(600) mesons from unitary resonance chiral dynamics. Phys. Rev. D, 84(9), 096002–20pp.
Abstract: We construct pi pi amplitudes that fulfill exact elastic unitarity, account for one-loop chiral perturbation theory contributions and include all 1/N(C) leading terms, with the only limitation of considering just the lowest-lying nonet of exchanged resonances. Within such a scheme, the N(C) dependence of sigma and rho masses and widths is discussed. Robust conclusions are drawn in the case of the rho resonance, confirming that it is a stable meson in the limit of a large number of QCD colors, N(C). Less definitive conclusions are reached in the scalar-isoscalar sector. With the present quality of data, we cannot firmly conclude whether or not the N(C) = 3 f(0)(600) resonance completely disappears at large N(C) or if it has a subdominant component in its structure, which would become dominant for a number of quark colors sufficiently large.
|