|
Cirigliano, V., Gisbert, H., Pich, A., & Rodriguez-Sanchez, A. (2020). Isospin-violating contributions to epsilon '/epsilon. J. High Energy Phys., 02(2), 032–44pp.
Abstract: The known isospin-breaking contributions to the K -> pi pi amplitudes are reanalyzed, taking into account our current understanding of the quark masses and the relevant non-perturbative inputs. We present a complete numerical reappraisal of the direct CP-violating ratio is an element of(')/is an element of, where these corrections play a quite significant role. We obtain the Standard Model prediction Re (is an element of(')/is an element of) = (14 +/- 5) <bold> </bold>10(-4), which is in very good agreement with the measured ratio. The uncertainty, which has been estimated conservatively, is dominated by our current ignorance about 1/N-C-suppressed contributions to some relevant chiral-perturbation-theory low-energy constants.
|
|
|
Davier, M., Diaz-Calderon, D., Malaescu, B., Pich, A., Rodriguez-Sanchez, A., & Zhang, Z. (2023). The Euclidean Adler function and its interplay with Delta alpha(had)(QED) and alpha(s). J. High Energy Phys., 04(4), 067–57pp.
Abstract: Three different approaches to precisely describe the Adler function in the Euclidean regime at around 2 GeVs are available: dispersion relations based on the hadronic production data in e(+)e(-) annihilation, lattice simulations and perturbative QCD (pQCD). We make a comprehensive study of the perturbative approach, supplemented with the leading power corrections in the operator product expansion. All known contributions are included, with a careful assessment of uncertainties. The pQCD predictions are compared with the Adler functions extracted from ?a( QED)(had)(Q(2)), using both the DHMZ compilation of e(+)e(-) data and published lattice results. Taking as input the FLAG value of a(s), the pQCD Adler function turns out to be in good agreement with the lattice data, while the dispersive results lie systematically below them. Finally, we explore the sensitivity to a(s) of the direct comparison between the data-driven, lattice and QCD Euclidean Adler functions. The precision with which the renormalisation group equation can be tested is also evaluated.
|
|
|
Eberhardt, O., Miralles, V., & Pich, A. (2021). Constraints on coloured scalars from global fits. J. High Energy Phys., 10(10), 123–23pp.
Abstract: We consider a simple extension of the electroweak theory, incorporating one SU(2)(L) doublet of colour-octet scalars with Yukawa couplings satisfying the principle of minimal flavour violation. Using the HEPfit package, we perform a global fit to the available data, including all relevant theoretical constraints, and extract the current bounds on the model parameters. Coloured scalars with masses below 1.05 TeV are already excluded, provided they are not fermiophobic. The mass splittings among the different (charged and CP-even and CP-odd neutral) scalars are restricted to be smaller than 20 GeV. Moreover, for scalar masses smaller than 1.5 TeV, the Yukawa coupling of the coloured scalar multiplet to the top quark cannot exceed the one of the SM Higgs doublet by more than 80%. These conclusions are quite generic and apply in more general frameworks (without fine tunings). The theoretical requirements of perturbative unitarity and vacuum stability enforce relevant constraints on the quartic scalar potential parameters that are not yet experimentally tested.
|
|
|
Eberhardt, O., Peñuelas, A., & Pich, A. (2021). Global fits in the Aligned Two-Higgs-Doublet model. J. High Energy Phys., 05(5), 005–37pp.
Abstract: We present the results of a global fit to the Aligned Two-Higgs Doublet Model, assuming that there are no new sources of CP violation beyond the quark mixing matrix. We use the most constraining flavour observables, electroweak precision measurements and the available data on Higgs signal strengths and collider searches for heavy scalars, together with the theoretical requirements of perturbativity and positivity of the scalar potential. The combination of all these constraints restricts the values of the scalar masses, the couplings of the scalar potential and the flavour-alignment parameters. The numerical fits have been performed using the open-source HEPfit package.
|
|
|
Ferrando Solera, S., Pich, A., & Vale Silva, L. (2024). Direct bounds on Left-Right gauge boson masses at LHC Run 2. J. High Energy Phys., 02(2), 027–39pp.
Abstract: While the third run of the Large Hadron Collider (LHC) is ongoing, the underlying theory that extends the Standard Model remains so far unknown. Left-Right Models (LRMs) introduce a new gauge sector, and can restore parity symmetry at high enough energies. If LRMs are indeed realized in nature, the mediators of the new weak force can be searched for in colliders via their direct production. We recast existing experimental limits from the LHC Run 2 and derive generic bounds on the masses of the heavy LRM gauge bosons. As a novelty, we discuss the dependence of the WR and ZR total width on the LRM scalar content, obtaining model-independent bounds within the specific realizations of the LRM scalar sectors analysed here. These bounds avoid the need to detail the spectrum of the scalar sector, and apply in the general case where no discrete symmetry is enforced. Moreover, we emphasize the impact on the WR production at LHC of general textures of the right-handed quark mixing matrix without manifest left-right symmetry. We find that the WR and ZR masses are constrained to lie above 2 TeV and 4 TeV, respectively.
|
|
|
Fischer, O. et al, & Pich, A. (2022). Unveiling hidden physics at the LHC. Eur. Phys. J. C, 82(8), 665–58pp.
Abstract: The field of particle physics is at the crossroads. The discovery of a Higgs-like boson completed the Standard Model (SM), but the lacking observation of convincing resonances Beyond the SM (BSM) offers no guidance for the future of particle physics. On the other hand, the motivation for New Physics has not diminished and is, in fact, reinforced by several striking anomalous results in many experiments. Here we summarise the status of the most significant anomalies, including the most recent results for the flavour anomalies, the multi-lepton anomalies at the LHC, the Higgs-like excess at around 96 GeV, and anomalies in neutrino physics, astrophysics, cosmology, and cosmic rays. While the LHC promises up to 4 ab(-1) of integrated luminosity and far-reaching physics programmes to unveil BSM physics, we consider the possibility that the latter could be tested with present data, but that systemic shortcomings of the experiments and their search strategies may preclude their discovery for several reasons, including: final states consisting in soft particles only, associated production processes, QCD-like final states, close-by SM resonances, and SUSY scenarios where no missing energy is produced. New search strategies could help to unveil the hidden BSM signatures, devised by making use of the CERN open data as a new testing ground. We discuss the CERN open data with its policies, challenges, and potential usefulness for the community. We showcase the example of the CMS collaboration, which is the only collaboration regularly releasing some of its data. We find it important to stress that individuals using public data for their own research does not imply competition with experimental efforts, but rather provides unique opportunities to give guidance for further BSM searches by the collaborations. Wide access to open data is paramount to fully exploit the LHCs potential.
|
|
|
Gersabeck, E., & Pich, A. (2020). Tau and charm decays. C. R. Phys., 21(1), 75–92.
Abstract: A summary of recent precise results in tau and charm physics is presented. Topics include leptonic and hadronic tau decays, lepton flavour and lepton number violation, charm mixing and CP violation, leptonic and semileptonic charm decays, rare decays and spectroscopy.
|
|
|
Gisbert, H., & Pich, A. (2018). Direct CP violation in K-0 -> pi pi : Standard Model Status. Rep. Prog. Phys., 81(7), 076201–22pp.
Abstract: In 1988 the NA31 experiment presented the first evidence of direct CP violation in the K-0 -> pi pi decay amplitudes. A clear signal with a 7.2 sigma statistical significance was later established with the full data samples from the NA31, E731, NA48 and KTeV experiments, confirming that CP violation is associated with a Delta S = 1 quark transition, as predicted by the Standard Model. However, the theoretical prediction for the measured ratio epsilon'/epsilon has been a subject of strong controversy along the years. Although the underlying physics was already clarified in 2001, the recent release of improved lattice data has revived again the theoretical debate. We review the current status, discussing in detail the different ingredients that enter into the calculation of this observable and the reasons why seemingly contradictory predictions were obtained in the past by several groups. An update of the Standard Model prediction is presented and the prospects for future improvements are analysed. Taking into account all known short-distance and long-distance contributions, one obtains Re (epsilon' / epsilon) = (15 +/- 7) . 10(-4), in good agreement with the experimental measurement.
|
|
|
Gomez Dumm, D., Roig, P., Pich, A., & Portoles, J. (2010). Hadron structure in tau -> KK pi nu(tau) decays. Phys. Rev. D, 81(3), 034031–17pp.
Abstract: We analyze the hadronization structure of both vector and axial-vector currents leading to tau -> KK pi nu(tau) decays. At leading order in the 1/N-C expansion, and considering only the contribution of the lightest resonances, we work out, within the framework of the resonance chiral Lagrangian, the structure of the local vertices involved in those processes. The couplings in the resonance theory are constrained by imposing the asymptotic behavior of vector and axial-vector spectral functions ruled by QCD. In this way we predict the hadron spectra and conclude that, contrary to previous assertions, the vector contribution dominates by far over the axial-vector one in all KK pi charge channels.
|
|
|
Gomez Dumm, D., Roig, P., Pich, A., & Portoles, J. (2010). tau -> pi pi pi nu(tau) decays and the a(1)(1260) off-shell width revisited. Phys. Lett. B, 685(2-3), 158–164.
Abstract: The tau -> pi pi pi nu(tau) decay is driven by the hadronization of the axial-vector current. Within the resonance chiral theory, and considering the large-N-C expansion, this process has been studied in Ref. [1] (D. Gomez Dumm, A. Pich, J. Portoles, 2004). In the light of later developments we revise here this previous work by including a new off-shell width for the lightest a(1) resonance that provides a good description of the tau -> pi pi pi nu(tau) spectrum and branching ratio. We also consider the role of the rho(1450) resonance in these observables. Thus we bring in an overall description of the tau -> pi pi pi nu(tau) process in excellent agreement with our present experimental knowledge.
|
|