Home | << 1 2 3 4 5 6 >> |
Kou, E. et al, Perello, M., Pich, A., & Vos, M. (2019). The Belle II Physics Book. Prog. Theor. Exp. Phys., (12), 123C01–654pp.
Abstract: We present the physics program of the Belle II experiment, located on the intensity frontier SuperKEKB e+e− collider. Belle II collected its first collisions in 2018, and is expected to operate for the next decade. It is anticipated to collect 50/ab of collision data over its lifetime. This book is the outcome of a joint effort of Belle II collaborators and theorists through the Belle II theory interface platform (B2TiP), an effort that commenced in 2014. The aim of B2TiP was to elucidate the potential impacts of the Belle II program, which includes a wide scope of physics topics: B physics, charm, tau, quarkonium, electroweak precision measurements and dark sector searches. It is composed of nine working groups (WGs), which are coordinated by teams of theorist and experimentalists conveners: Semileptonic and leptonic B decays, Radiative and Electroweak penguins, phi1 and phi2 (time-dependent CP violation) measurements, phi_3 measurements, Charmless hadronic B decay, Charm, Quarkonium(like), tau and low-multiplicity processes, new physics and global fit analyses. This book highlights “golden- and silver-channels”, i.e. those that would have the highest potential impact in the field. Theorists scrutinised the role of those measurements and estimated the respective theoretical uncertainties, achievable now as well as prospects for the future. Experimentalists investigated the expected improvements with the large dataset expected from Belle II, taking into account improved performance from the upgraded detector.
|
Krause, C., Pich, A., Rosell, I., Santos, J., & Sanz-Cillero, J. J. (2019). Colorful imprints of heavy states in the electroweak effective theory. J. High Energy Phys., 05(5), 092–51pp.
Abstract: We analyze heavy states from generic ultraviolet completions of the Standard Model in a model-independent way and investigate their implications on the low-energy couplings of the electroweak effective theory. We build a general effective Lagrangian, implementing the electroweak symmetry breaking SU(2)(L) circle times SU(2)(R) SU(2)(L+R) with a non-linear Nambu-Goldstone realization, which couples the known particles to the heavy states. We generalize the formalism developed in previous works [1, 2] to include colored resonances, both of bosonic and fermionic type. We study bosonic heavy states with J(P) = 0(+/-) and J(P) = 1(+/-), in singlet or triplet SU(2)(L+R) representations and in singlet or octet representations of SU(3)(C) , and fermionic resonances with that are electroweak doublets and QCD triplets or singlets. Integrating out the heavy scales, we determine the complete pattern of low-energy couplings at the lowest non-trivial order. Some specific types of (strongly- and weakly-coupled) ultraviolet completions are discussed to illustrate the generality of our approach and to make contact with current experimental searches.
|
Ledwig, T., Nieves, J., Pich, A., Ruiz Arriola, E., & Ruiz de Elvira, J. (2014). Large-N-c naturalness in coupled-channel meson-meson scattering. Phys. Rev. D, 90(11), 114020–17pp.
Abstract: The analysis of hadronic interactions with effective field theory techniques is complicated by the appearance of a large number of low-energy constants, which are usually fitted to data. On the other hand, the large-N-c limit helps to impose natural short-distance constraints on these low-energy constants, providing a parameter reduction. A Bayesian interpretation of the expected 1/N-c accuracy allows for an easy and efficient implementation of these constraints, using an augmented chi(2). We apply this approach to the analysis of meson-meson scattering, in conjunction with chiral perturbation theory to one loop and coupled-channel unitarity, and show that it helps to largely reduce the many existing ambiguities and simultaneously provide an acceptable description of the available phase shifts.
|
Li, X. Q., Lu, J., & Pich, A. (2014). Bs,d(0) -> l(+)l(-) decays in the aligned two-Higgs-doublet model. J. High Energy Phys., 06(6), 022–39pp.
Abstract: The rare decays B-s,d(0) -> l(+)l(-) are analyzed within the general framework of the aligned two-Higgs doublet model. We present a complete one-loop calculation of the relevant short-distance Wilson coefficients, giving a detailed technical summary of our results and comparing them with previous calculations performed in particular limits or approximations. We investigate the impact of various model parameters on the branching ratios and study the phenomenological constraints imposed by present data.
Keywords: Higgs Physics; Rare Decays; Beyond Standard Model; B-Physics
|
Mandal, R., Murgui, C., Peñuelas, A., & Pich, A. (2020). The role of right-handed neutrinos in b -> c tau nubar anomalies. J. High Energy Phys., 08(8), 022–46pp.
Abstract: Motivated by the persistent anomalies reported in the b -> c tau v<overbar></mml:mover> data, we perform a general model-independent analysis of these transitions, in the presence of light right-handed neutrinos. We adopt an effective field theory approach and write a low-energy effective Hamiltonian, including all possible dimension-six operators. The corresponding Wilson coefficients are determined through a numerical fit to all available experimental data. In order to work with a manageable set of free parameters, we define eleven well- motivated scenarios, characterized by the different types of new physics that could mediate these transitions, and analyse which options seem to be preferred by the current measurements. The data exhibit a clear preference for new-physics contributions, and good fits to the data are obtained in several cases. However, the current measurement of the longitudinal D<SUP></SUP> polarization in B -> D tau v<overbar></mml:mover> cannot be easily accommodated within its experimental 1 sigma range. A general analysis of the three-body B -> D tau v<overbar></mml:mover> and four-body B -> D<mml:mo><mml:mfenced close=“)” open=“(”><mml:mo>-> D pi</mml:mfenced>tau <mml:mover accent=“true”>v<mml:mo stretchy=“true”><overbar></mml:mover> angular distributions is also presented. The accessible angular observables are studied in order to assess their sensitivity to the different new physics scenarios. Experimental information on these distributions would help to disentangle the dynamical origin of the current anomalies.
|
Mandal, R., & Pich, A. (2019). Constraints on scalar leptoquarks from lepton and kaon physics. J. High Energy Phys., 12(12), 089–40pp.
Abstract: We present a comprehensive analysis of low-energy signals of hypothetical scalar leptoquark interactions in lepton and kaon transitions. We derive the most general effective four-fermion Lagrangian induced by tree-level scalar leptoquark exchange and identify the Wilson coefficients predicted by the five possible types of scalar leptoquarks. The current constraints on the leptoquark Yukawa couplings arising from lepton and kaon processes are worked out, including also loop-induced transitions with only leptons (or quarks) as external states. In the presence of scalar leptoquark interactions, we also derive the differential distributions for flavour-changing neutral-current transitions in semileptonic kaon modes, including all known effects within the Standard Model. Their interference with the new physics contributions could play a significant role in future improvements of those constraints that are currently hampered by poorly-determined non-perturbative parameters.
Keywords: Beyond Standard Model; Kaon Physics
|
Miralles, V., & Pich, A. (2019). LHC bounds on colored scalars. Phys. Rev. D, 100(11), 115042–11pp.
Abstract: We analyze the constraints on colored scalar bosons imposed by the current LHC data at root s = 13 TeV. Specifically, we consider an additional electroweak doublet of color-octet scalars, satisfying the principle of minimal flavor violation in order to fulfill the stringent experimental limits on flavor-changing neutral currents. We demonstrate that colored scalars with masses below 800 GeV are already excluded, provided they are not fermiophobic.
|
Murgui, C., Peñuelas, A., Jung, M., & Pich, A. (2019). Global fit to b -> c tau nu transitions. J. High Energy Phys., 09(9), 103–45pp.
Abstract: We perform a general model-independent analysis of b -> c tau(nu) over bar (tau) transitions, including measurements of R-D, R-D*, their q(2) differential distributions, the recently measured longitudinal D* polarization F-L(D)*, and constraints from the B-c -> tau(nu) over bar (tau) lifetime, each of which has significant impact on the fit. A global fit to a general set of Wilson coefficients of an effective low-energy Hamiltonian is presented, the solutions of which are interpreted in terms of hypothetical new-physics mediators. From the obtained results we predict selected b -> c tau(nu) over bar (tau) observables, such as the baryonic transition Lambda(b) -> Lambda(c)tau(nu) over bar (tau), the ratio R-J/psi, the forward-backward asymmetries A(FB)(D()*()), the tau polarization asymmetries P-tau(D()*()), and the longitudinal D* polarization fraction F-L(D)*. The latter shows presently a slight tension with any new-physics model, such that an improved measurement could have an important impact. We also discuss the potential change due the very recently announced preliminary R-D(*) measurement by the Belle collaboration.
Keywords: Beyond Standard Model; Effective Field Theories
|
Nieves, J., Pich, A., & Ruiz Arriola, E. (2011). Large-N(C) properties of the rho and f(0)(600) mesons from unitary resonance chiral dynamics. Phys. Rev. D, 84(9), 096002–20pp.
Abstract: We construct pi pi amplitudes that fulfill exact elastic unitarity, account for one-loop chiral perturbation theory contributions and include all 1/N(C) leading terms, with the only limitation of considering just the lowest-lying nonet of exchanged resonances. Within such a scheme, the N(C) dependence of sigma and rho masses and widths is discussed. Robust conclusions are drawn in the case of the rho resonance, confirming that it is a stable meson in the limit of a large number of QCD colors, N(C). Less definitive conclusions are reached in the scalar-isoscalar sector. With the present quality of data, we cannot firmly conclude whether or not the N(C) = 3 f(0)(600) resonance completely disappears at large N(C) or if it has a subdominant component in its structure, which would become dominant for a number of quark colors sufficiently large.
|
Particle Data Group(Workman, R. L. et al), Hernandez-Rey, J. J., & Pich, A. (2022). Review of Particle Physics. Prog. Theor. Exp. Phys., 2022(8), 083C01–2270pp.
Abstract: The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app.
|