|
Perez-Ramos, R. (2011). The Internal Structure Of Jets At Colliders: Light And Heavy Quark Inclusive Hadronic Distributions. Int. J. Mod. Phys. E, 20(7), 1616–1622.
Abstract: In this paper, we report our results on charged hadron multiplicities of heavy quark initiated jets produced in high energy collisions. After implementing the so-called dead cone effect in QCD evolution equations, we find that the average multiplicity decreases significantly as compared to the massless case. Finally, we discuss the transverse momentum distribution of light quark initiated jets and emphasize the comparison between our predictions and CDF data.
|
|
|
Perez-Ramos, R., & Mathieu, V. (2013). Collimation of energy in medium-modified QCD jets. Phys. Lett. B, 718(4-5), 1421–1424.
Abstract: The collimation of energy inside medium-modified jets is investigated in the leading logarithmic approximation of QCD. The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations are slightly modified by introducing splitting functions enhanced in the infrared sector. As compared to elementary collisions in the vacuum, the angular distribution of the jet energy is found to broaden in QCD media.
|
|
|
Perez-Ramos, R., Mathieu, V., & Sanchis-Lozano, M. A. (2011). Three-particle correlations in QCD jets and beyond. J. Phys. G, 38(11), 115007–34pp.
Abstract: In this paper, we present a detailed study of three-particle correlations in quark and gluon jets. We give theoretical results for this observable in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. In addition, in this paper we include predictions beyond the limiting spectrum approximation and study this observable near the hump of the single inclusive distribution. We thus provide a further test of the local parton hadron duality and make predictions for the LHC. The computation of higher rank correlators is presented in the double logarithmic approximation and shown to be rather cumbersome.
|
|
|
Perez-Ramos, R., Mathieu, V., & Sanchis-Lozano, M. A. (2011). Three-particle correlations in QCD parton showers. Phys. Rev. D, 84(3), 034015–7pp.
Abstract: Three-particle correlations in quark and gluon jets are computed for the first time in perturbative QCD. We give results in the double logarithmic approximation and the modified leading logarithmic approximation. In both resummation schemes, we use the formalism of the generating functional and solve the evolution equations analytically from the steepest descent evaluation of the one-particle distribution. We thus provide a further test of the local parton hadron duality and make predictions for the LHC.
|
|
|
Perez-Ramos, R., Mathieu, V., & Sanchis-Lozano, M. A. (2010). Heavy quark flavour dependence of multiparticle production in QCD jets. J. High Energy Phys., 08(8), 047–24pp.
Abstract: After inserting the heavy quark mass dependence into QCD partonic evolution equations, we determine the mean charged hadron multiplicity and second multiplicity correlators of jets produced in high energy collisions. We thereby extend the so-called dead cone effect to the phenomenology of multiparticle production in QCD jets and find that the average multiplicity of heavy-quark initiated jets decreases significantly as compared to the massless case, even taking into account the weak decay products of the leading primary quark. We emphasize the relevance of our study as a complementary check of b-tagging techniques at hadron colliders like the Tevatron and the LHC.
|
|
|
Perez-Ramos, R., Sanchis-Lozano, M. A., & Sarkisyan-Grinbaum, E. K. (2022). Searching for hidden matter with long-range angular correlations at e(+)e(-) colliders. Phys. Rev. D, 105(5), 053001–8pp.
Abstract: The analysis of azimuthal correlations in multiparticle production can be useful to uncover the existence of new physics beyond the Standard Model, e.g., Hidden Valley, in e(+)e(-) annihilation at high energies. In this paper, based on previous theoretical studies and using the PYTHIA8 event generator, it is found that both azimuthal and rapidity long-range correlations are enhanced due to the presence of a new stage of matter on top of the QCD partonic cascade. Ridge structures, similar to those observed in hadronic collisions at the LHC, show up providing a possible signature of new physics at future e(+)e(-) colliders.
|
|