|
Aristizabal Sierra, D., De Romeri, V., Flores, L. J., & Papoulias, D. K. (2020). Light vector mediators facing XENON1T data. Phys. Lett. B, 809, 135681–5pp.
Abstract: Recently the XENON1T collaboration has released new results on searches for new physics in low-energy electronic recoils. The data shows an excess over background in the low-energy tail, particularly pronounced at about 2-3 keV. With an exposure of 0.65 tonne-year, large detection efficiency and energy resolution, the detector is sensitive as well to solar neutrino backgrounds, with the most prominent contribution given by pp neutrinos. We investigate whether such signal can be explained in terms of new neutrino interactions with leptons mediated by a light vector particle. We find that the excess is consistent with this interpretation for vector masses below less than or similar to 0.1 MeV. The region of parameter space probed by the XENON1T data is competitive with constraints from laboratory experiments, in particular GEMMA, Borexino and TEXONO. However we point out a severe tension with astrophysical bounds and cosmological observations.
|
|
|
Aristizabal Sierra, D., De Romeri, V., & Papoulias, D. K. (2022). Consequences of the Dresden-II reactor data for the weak mixing angle and new physics. J. High Energy Phys., 09(9), 076–22pp.
Abstract: The Dresden-II reactor experiment has recently reported a suggestive evidence for the observation of coherent elastic neutrino-nucleus scattering, using a germanium detector. Given the low recoil energy threshold, these data are particularly interesting for a low-energy determination of the weak mixing angle and for the study of new physics leading to spectral distortions at low momentum transfer. Using two hypotheses for the quenching factor, we study the impact of the data on: (i) The weak mixing angle at a renormalization scale of similar to 10 MeV, (ii) neutrino generalized interactions with light mediators, (iii) the sterile neutrino dipole portal. The results for the weak mixing angle show a strong dependence on the quenching factor choice. Although still with large uncertainties, the Dresden-II data provide for the first time a determination of sin(2)theta(W) at such scale using coherent elastic neutrino-nucleus scattering data. Tight upper limits are placed on the light vector, scalar and tensor mediator scenarios. Kinematic constraints implied by the reactor anti-neutrino flux and the ionization energy threshold allow the sterile neutrino dipole portal to produce up-scattering events with sterile neutrino masses up to similar to 8 MeV. In this context, we find that limits are also sensitive to the quenching factor choice, but in both cases competitive with those derived from XENON1T data and more stringent that those derived with COHERENT data, in the same sterile neutrino mass range.
|
|
|
Candela, P. M., De Romeri, V., Melas, P., Papoulias, D. K., & Saoulidou, N. (2024). Up-scattering production of a sterile fermion at DUNE: complementarity with spallation source and direct detection experiments. J. High Energy Phys., 10(10), 032–36pp.
Abstract: We investigate the possible production of a MeV-scale sterile fermion through the up-scattering of neutrinos on nuclei and atomic electrons at different facilities. We consider a phenomenological model that adds a new fermion to the particle content of the Standard Model and we allow for all possible Lorentz-invariant non-derivative interactions (scalar, pseudoscalar, vector, axial-vector and tensor) of neutrinos with electrons and first-generation quarks. We first explore the sensitivity of the DUNE experiment to this scenario, by simulating elastic neutrino-electron scattering events in the near detector. We consider both options of a standard and a tau-optimized neutrino beams, and investigate the impact of a mobile detector that can be moved off-axis with respect to the beam. Next, we infer constraints on the typical coupling, new fermion and mediator masses from elastic neutrino-electron scattering events induced by solar neutrinos in two current dark matter direct detection experiments, XENONnT and LZ. Under the assumption that the new mediators couple also to first-generation quarks, we further set constraints on the up-scattering production of the sterile fermion using coherent elastic neutrino-nucleus scattering data from the COHERENT experiment. Moreover, we set additional constraints assuming that the sterile fermion may decay within the detector. We finally compare our results and discuss how these facilities are sensitive to different regions of the relevant parameter space due to kinematics arguments and can hence provide complementary information on the up-scattering production of a sterile fermion.
|
|
|
Candela, P. M., De Romeri, V., & Papoulias, D. K. (2023). COHERENT production of a dark fermion. Phys. Rev. D, 108(5), 055001–19pp.
Abstract: We consider the possible production of a new MeV-scale fermion at the COHERENT experiment. The new fermion, belonging to a dark sector, can be produced through the up-scattering process of neutrinos off the nuclei and the electrons of the detector material, via the exchange of a light vector or scalar mediator. We perform a detailed statistical analysis of the combined COHERENT CsI and LAr datasets and obtain up-to-date constraints on the couplings and masses of the dark fermion and mediators. We finally briefly comment about the stability of the dark fermion.
|
|
|
Chattaraj, A., Majumdar, A., Papoulias, D. K., & Srivastava, R. (2025). Probing conventional and new physics at the ESS with coherent elastic neutrino-nucleus scattering. J. High Energy Phys., 05(5), 064–49pp.
Abstract: We explore the potential of the European Spallation Source (ESS) in probing physics within and beyond the Standard Model (SM), based on future measurements of coherent elastic neutrino-nucleus scattering (CE nu NS). We consider two SM physics cases, namely the weak mixing angle and the nuclear radius. Regarding physics beyond the SM, we focus on neutrino generalized interactions (NGIs) and on various aspects of sterile neutrino and sterile neutral lepton phenomenology. For this, we explore the violation of lepton unitarity, active-sterile oscillations as well as interesting upscattering channels such as the sterile dipole portal and the production of sterile neutral leptons via NGIs. The projected ESS sensitivities are estimated by performing a statistical analysis considering the various CE nu NS detectors and expected backgrounds. We find that the enhanced statistics achievable in view of the highly intense ESS neutrino beam, will offer a drastic improvement in the current constraints obtained from existing CE nu NS measurements. Finally, we discuss how the ESS has the potential to provide the leading CE nu NS-based constraints, complementing also further experimental probes and astrophysical observations.
|
|
|
De Romeri, V., Majumdar, A., Papoulias, D. K., & Srivastava, R. (2024). XENONnT and LUX-ZEPLIN constraints on DSNB-boosted dark matter. J. Cosmol. Astropart. Phys., 03(3), 028–34pp.
Abstract: We consider a scenario in which dark matter particles are accelerated to semirelativistic velocities through their scattering with the Diffuse Supernova Neutrino Background. Such a subdominant, but more energetic dark matter component can be then detected via its scattering on the electrons and nucleons inside direct detection experiments. This opens up the possibility to probe the sub -GeV mass range, a region of parameter space that is usually not accessible at such facilities. We analyze current data from the XENONnT and LUX-ZEPLIN experiments and we obtain novel constraints on the scattering cross sections of sub -GeV boosted dark matter with both nucleons and electrons. We also highlight the importance of carefully taking into account Earth's attenuation effects as well as the finite nuclear size into the analysis. By comparing our results to other existing constraints, we show that these effects lead to improved and more robust constraints.
|
|
|
De Romeri, V., Miranda, O. G., Papoulias, D. K., Sanchez Garcia, G., Tortola, M., & Valle, J. W. F. (2023). Physics implications of a combined analysis of COHERENT CsI and LAr data. J. High Energy Phys., 04(4), 035–41pp.
Abstract: The observation of coherent elastic neutrino nucleus scattering has opened the window to many physics opportunities. This process has been measured by the COHERENT Collaboration using two different targets, first CsI and then argon. Recently, the COHERENT Collaboration has updated the CsI data analysis with a higher statistics and an improved understanding of systematics. Here we perform a detailed statistical analysis of the full CsI data and combine it with the previous argon result. We discuss a vast array of implications, from tests of the Standard Model to new physics probes. In our analyses we take into account experimental uncertainties associated to the efficiency as well as the timing distribution of neutrino fluxes, making our results rather robust. In particular, we update previous measurements of the weak mixing angle and the neutron root mean square charge radius for CsI and argon. We also update the constraints on new physics scenarios including neutrino nonstandard interactions and the most general case of neutrino generalized interactions, as well as the possibility of light mediators. Finally, constraints on neutrino electromagnetic properties are also examined, including the conversion to sterile neutrino states. In many cases, the inclusion of the recent CsI data leads to a dramatic improvement of bounds.
|
|
|
De Romeri, V., Papoulias, D. K., & Sanchez Garcia, G. (2025). Implications of the first CONUS plus measurement of coherent elastic neutrino-nucleus scattering. Phys. Rev. D, 111(7), 075025–19pp.
Abstract: The CONUS & thorn; collaboration has reported their first observation of coherent elastic neutrino-nucleus scattering (CEvNS). The experiment uses reactor electron antineutrinos and germanium detectors with recoil thresholds as low as 160 eVee. With an exposure of 327 kg x d, the measurement was made with a statistical significance of 3.76. We explore several physics implications of this observation, both within the standard model and in the context of new physics. We focus on a determination of the weak mixing angle, nonstandard and generalized neutrino interactions both with heavy and light mediators, neutrino magnetic moments, and the up-scattering of neutrinos into sterile fermions through the sterile dipole portal and new mediators. Our results highlight the role of reactor-based CEvNS experiments in probing a vast array of neutrino properties and new physics models.
|
|
|
De Romeri, V., Papoulias, D. K., & Ternes, C. A. (2025). Bounds on new neutrino interactions from the first CEνNS data at direct detection experiments. J. Cosmol. Astropart. Phys., 05(5), 012–23pp.
Abstract: Recently, two dark matter direct detection experiments have announced the first indications of nuclear recoils from solar 8B neutrinos via coherent elastic neutrino-nucleus scattering (CE nu NS) with xenon nuclei. These results constitute a turning point, not only for dark matter searches that are now entering the neutrino fog, but they also bring out new opportunities to exploit dark matter facilities as neutrino detectors. We investigate the implications of recent data from the PandaX-4T and XENONnT experiments on both Standard Model physics and new neutrino interactions. We first extract information on the weak mixing angle at low momentum transfer. Then, following a phenomenological approach, we consider Lorentz-invariant interactions (scalar, vector, axial-vector, and tensor) between neutrinos, quarks and charged leptons. Furthermore, we study the U(1)B-L scenario as a concrete example of a new anomaly-free vector interaction. We find that despite the low statistics of these first experimental results, the inferred bounds are in some cases already competitive. For the scope of this work we also compute new bounds on some of the interactions using CE nu NS data from COHERENT and electron recoil data from XENONnT, LUX-ZEPLIN, PandaX-4T, and TEXONO. It seems clear that while direct detection experiments continue to take data, more precise measurements will be available, thus allowing to test new neutrino interactions at the same level or even improving over dedicated neutrino facilities.
|
|
|
De Romeri, V., Papoulias, D. K., & Ternes, C. A. (2024). Light vector mediators at direct detection experiments. J. High Energy Phys., 05(5), 165–22pp.
Abstract: Solar neutrinos induce elastic neutrino-electron scattering in dark matter direct detection experiments, resulting in detectable event rates at current facilities. We analyze recent data from the XENONnT, LUX-ZEPLIN, and PandaX-4T experiments and we derive stringent constraints on several U(1) ' extensions of the Standard Model, accommodating new neutrino-electron interactions. We provide bounds on the relevant coupling and mass of light vector mediators for a variety of models, including the anomaly-free B – L model, lepton flavor-dependent interactions like L alpha – L beta , B – 2L e – L mu,tau , B – 3L alpha , and B + 2L μ+ 2L tau models. We compare our results with other limits obtained in the literature from both terrestrial and astrophysical experiments. Finally, we present forecasts for improving current bounds with a future experiment like DARWIN.
|
|