Irles, A., Marquez, J. P., Pöschl, R., Richard, F., Saibel, A., Yamamoto, H., et al. (2024). Probing gauge-Higgs unification models at the ILC with quark-antiquark forward-backward asymmetry at center-of-mass energies above the Z mass. Eur. Phys. J. C, 84(5), 537–17pp.
Abstract: The International Linear Collider (ILC) will allow the precise study of e(-)e(+)-> q (q) over bar interactions at different center-of-mass energies from the Z-pole to 1 TeV. In this paper, we discuss the experimental prospects for measuring differential observables in e(-)e(+)-> b (b) over bar and e(-)e(+) -> c (c) over bar at the ILC baseline energies, 250 and 500 GeV. The study is based on full simulation and reconstruction of the International Large Detector (ILD) concept. Two gauge-Higgs unification models predicting new high-mass resonances beyond the Standard Model are discussed. These models predict sizable deviations of the forward-backward observables at the ILC running above the Z mass and with longitudinally polarized electron and positron beams. The ability of the ILC to probe these models via high-precision measurements of the forward-backward asymmetry is discussed. Alternative scenarios at other energies and beam polarization schemes are also discussed, extrapolating the estimated uncertainties from the two baseline scenarios.
|