|
Boito, D., Cata, O., Golterman, M., Jamin, M., Maltman, K., Osborne, J., et al. (2011). New determination of alpha(s) from hadronic tau decays. Phys. Rev. D, 84(11), 113006–19pp.
Abstract: We present a new framework for the extraction of the strong coupling from hadronic tau decays through finite-energy sum rules. Our focus is on the small, but still significant nonperturbative effects that, in principle, affect both the central value and the systematic error. We employ a quantitative model in order to accommodate violations of quark-hadron duality, and enforce a consistent treatment of the higher-dimensional contributions of the operator product expansion to our sum rules. Using 1998 OPAL data for the nonstrange isovector vector and axial-vector spectral functions, we find the n(f) = 3 values alpha(s)(m(tau)(2)) = 0.307 +/- 0.019 in fixed-order perturbation theory, and 0.322 +/- 0.026 in contour-improved perturbation theory. For comparison, the original OPAL analysis of the same data led to the values 0.324 +/- 0.014 (fixed order) and 0.348 +/- 0.021 (contour improved).
|
|
|
Keivani, A., Murase, K., Petropoulou, M., Fox, D. B., Cenko, S. B., Chaty, S., et al. (2018). A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration. Astrophys. J., 864(1), 84–16pp.
Abstract: Detection of the IceCube-170922A neutrino coincident with the flaring blazar TXS 0506+056, the first and only similar to 3 sigma high-energy neutrino source association to date, offers a potential breakthrough in our understanding of high-energy cosmic particles and blazar physics. We present a comprehensive analysis of TXS. 0506+056 during its flaring state, using newly collected Swift, NuSTAR, and X-shooter data with Fermi observations and numerical models to constrain the blazar's particle acceleration processes and multimessenger (electromagnetic (EM) and high-energy neutrino) emissions. Accounting properly for EM cascades in the emission region, we find a physically consistent picture only within a hybrid leptonic scenario, with gamma-rays produced by external inverse-Compton processes and high-energy neutrinos via a radiatively subdominant hadronic component. We derive robust constraints on the blazar's neutrino and cosmic-ray emissions and demonstrate that, because of cascade effects, the 0.1-100 keV emissions of TXS. 0506+056 serve as a better probe of its hadronic acceleration and highenergy neutrino production processes than its GeV-TeV emissions. If the IceCube neutrino association holds, physical conditions in the TXS. 0506+056 jet must be close to optimal for high-energy neutrino production, and are not favorable for ultrahigh-energy cosmic-ray acceleration. Alternatively, the challenges we identify in generating a significant rate of IceCube neutrino detections from TXS. 0506+056 may disfavor single-zone models, in which.-rays and high-energy neutrinos are produced in a single emission region. In concert with continued operations of the high-energy neutrino observatories, we advocate regular X-ray monitoring of TXS. 0506+056 and other blazars in order to test single-zone blazar emission models, clarify the nature and extent of their hadronic acceleration processes, and carry out the most sensitive possible search for additional multimessenger sources.
|
|