|
Andrade, I., Bazeia, D., Marques, M. A., Menezes, R., & Olmo, G. J. (2025). Analytical solutions for Maxwell-scalar system on radially symmetric spacetimes. Eur. Phys. J. C, 85(1), 27–15pp.
Abstract: We investigate Maxwell-scalar models on radially symmetric spacetimes in which the gauge and scalar fields are coupled via the electric permittivity. We find the conditions that allow for the presence of minimum energy configurations. In this formalism, the charge density must be written exclusively in terms of the components of the metric tensor and the scalar field is governed by first-order equations. We also find a manner to map the aforementioned equation into the corresponding one associated to kinks in (1, 1) spacetime dimensions, so we get analytical solutions for three specific spacetimes. We then calculate the energy density and show that the energy is finite. The stability of the solutions against contractions and dilations, following Derrick's argument, and around small fluctuations in the fields is also investigated. In this direction, we show that the solutions obeying the first-order framework are stable.
|
|
|
Lessa, L. A., & Olmo, G. J. (2025). On the structure of black bounces sourced by anisotropic fluids. J. Cosmol. Astropart. Phys., 03(3), 019–18pp.
Abstract: The field equations of static, spherically symmetric geometries generated by anisotropic fluids is investigated with the aim of better understanding the relation between the matter and the emergence of minimal area throats, like in wormhole and black bounce scenarios. Imposing some simplifying restrictions on the matter, which amounts to considering nonlinear electromagnetic sources, we find analytical expressions that allow one to design the type of sought geometries. We illustrate our analysis with several examples, including an asymmetric, bounded black bounce spacetime which reproduces the standard ReissnerNordstr & ouml;m geometry on the outside all the way down to the throat.
|
|
|
Alves Batista, R. et al, Mitsou, V. A., Olmo, G. J., & Zornoza, J. D. (2025). White paper and roadmap for quantum gravity phenomenology in the multi-messenger era. Class. Quantum Gravity, 42(3), 032001–47pp.
Abstract: The unification of quantum mechanics and general relativity has long been elusive. Only recently have empirical predictions of various possible theories of quantum gravity been put to test, where a clear signal of quantum properties of gravity is still missing. The dawn of multi-messenger high-energy astrophysics has been tremendously beneficial, as it allows us to study particles with much higher energies and travelling much longer distances than possible in terrestrial experiments, but more progress is needed on several fronts. A thorough appraisal of current strategies and experimental frameworks, regarding quantum gravity phenomenology, is provided here. Our aim is twofold: a description of tentative multimessenger explorations, plus a focus on future detection experiments. As the outlook of the network of researchers that formed through the COST Action CA18108 'Quantum gravity phenomenology in the multi-messenger approach (QG-MM)', in this work we give an overview of the desiderata that future theoretical frameworks, observational facilities, and data-sharing policies should satisfy in order to advance the cause of quantum gravity phenomenology.
|
|
|
Maso-Ferrando, A., Sanchis-Gual, N., Font, J. A., & Olmo, G. J. (2024). Numerical evolutions of boson stars in Palatini f(R) gravity. Phys. Rev. D, 109(4), 044042–14pp.
Abstract: We investigate the time evolution of spherically symmetric boson stars in Palatini f(R) gravity through numerical relativity computations. Employing a novel approach that establishes a correspondence between modified gravity with scalar matter and general relativity with modified scalar matter, we are able to use the techniques of numerical relativity to simulate these systems. Specifically, we focus on the quadratic theory f(R) = R + xi R2 and compare the obtained solutions with those in general relativity, exploring both positive and negative values of the coupling parameter xi. Our findings reveal that boson stars in Palatini f(R) gravity exhibit both stable and unstable evolutions. The latter give rise to three distinct scenarios: migration toward a stable configuration, complete dispersion, and gravitational collapse leading to the formation of a baby universe structure.
|
|
|
Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2024). On metric-affine bumblebee model coupled to scalar matter. Nucl. Phys. B, 1004, 116577–10pp.
Abstract: We consider the coupling of the metric-affine bumblebee gravity model to scalar matter and calculate the lower -order contributions to two -point functions of bumblebee and scalar fields in the weak gravity approximation. We also obtain the one -loop effective potentials for both scalar and vector fields.
|
|
|
Maluf, R. V., Mora-Perez, G., Olmo, G. J., & Rubiera-Garcia, D. (2024). Nonsingular, Lump-like, Scalar Compact Objects in (2+1)-Dimensional Einstein Gravity. Universe, 10(6), 258–13pp.
Abstract: We study the space-time geometry generated by coupling a free scalar field with a noncanonical kinetic term to general relativity in (2+1) dimensions. After identifying a family of scalar Lagrangians that yield exact analytical solutions in static and circularly symmetric scenarios, we classify the various types of solutions and focus on a branch that yields asymptotically flat geometries. We show that the solutions within such a branch can be divided in two types, namely naked singularities and nonsingular objects without a center. In the latter, the energy density is localized around a maximum and vanishes only at infinity and at an inner boundary. This boundary has vanishing curvatures and cannot be reached by any time-like or null geodesic in finite affine time. This allows us to consistently interpret such solutions as nonsingular, lump-like, static compact scalar objects whose eventual extension to the (3+1)-dimensional context could provide structures of astrophysical interest.
|
|
|
Magalhaes, R. B., Ribeiro, G. P., Lima, H. C. D. J., Olmo, G. J., & Crispino, L. C. B. (2024). Singular space-times with bounded algebraic curvature scalars. J. Cosmol. Astropart. Phys., 05(5), 114–34pp.
Abstract: We show that the absence of unbounded algebraic curvature invariants constructed from polynomials of the Riemann tensor cannot guarantee the absence of strong singularities. As a consequence, it is not sufficient to rely solely on the analysis of such scalars to assess the regularity of a given space-time. This conclusion follows from the analysis of incomplete geodesics within the internal region of asymmetric wormholes supported by scalar matter which arise in two distinct metric-affine gravity theories. These wormholes have bounded algebraic curvature scalars everywhere, which highlights that their finiteness does not prevent the emergence of pathologies (singularities) in the geodesic structure of space-time. By analyzing the tidal forces in the internal wormhole region, we find that the angular components are unbounded along incomplete radial time-like geodesics. The strength of the singularity is determined by the evolution of Jacobi fields along such geodesics, finding that it is of strong type, as volume elements are torn apart as the singularity is approached. Lastly, and for completeness, we consider the wormhole of the quadratic Palatini theory and present an analysis of the tidal forces in the entire space-time.
|
|
|
Castillo-Felisola, O., Grez, B., Olmo, G. J., Orellana, O., & Perdiguero Garate, J. (2024). Cosmological solutions in polynomial affine gravity with torsion. Eur. Phys. J. C, 84(9), 900–12pp.
Abstract: The Polynomial Affine Gravity is an alternative gravitational model, where the interactions are mediated solely by the affine connection, instead of the metric tensor. In this paper, we explore the space of solutions to the field equations when the torsion fields are turned on, in a homogeneous and isotropic (cosmological) scenario. We explore various metric structures that emerge in the space of solutions.
|
|
|
Magalhaes, R. B., Maso-Ferrando, A. S., Bombacigno, F., Olmo, G. J., & Crispino, L. C. B. (2024). Echoes from bounded universes. Phys. Rev. D, 110(4), 044058–21pp.
Abstract: We construct a general class of modified Ellis-Bronnikov wormholes, where one asymptotic Minkowski region is replaced by a bounded 2-sphere core, characterized by an asymptotic finite areal radius. We pursue an in-depth analysis of the resulting geometry, outlining that geodesic completeness is also guaranteed when the area function asymptotically shrinks to zero. Moreover, we perform an analysis of the circular orbits present in our model and conclude that stable circular orbits are allowed in the bounded region. As a consequence, a stable light ring may exist in the inner region and trapped orbits may appear within this bounded region. Such internal structure suggests that the bounded region can trap perturbations. Then, we study the evolution of scalar perturbations, bringing out how these geometric configurations can in principle affect the time-domain profiles of quasinormal modes, pointing out the distinctive features with respect to other black hole or wormhole geometries.
|
|
|
Batool, A., Malik Sultan, A., Olmo, G. J., & Rubiera-Garcia, D. (2024). Stellar structure in f(R,T) gravity: Some exact solutions. Phys. Rev. D, 110(6), 064059–6pp.
Abstract: We find some exact solutions for constant-density and quark matter equations of state in stellar structure models framed within the f(R, T) = R + lambda(KT)-T-2 theory of gravity, where R is the curvature scalar, T the trace of the stress-energy tensor, and lambda some constant. These solutions correspond to specific values of the constant lambda and represent different compactness states of the corresponding stars, though only those made of quark matter can be regarded as physical. The latter modify the compactness (Buchdahl) limit of neutron stars upward for lambda > 0 until saturating the one of black holes. Our results show that it is possible to find useful insights on stellar structure in this class of theories, a fact that could be used for obtaining constraints on limiting masses such as the minimum hydrogen burning mass.
|
|