Bambi, C., Olmo, G. J., & Rubiera-Garcia, D. (2015). Melvin universe in Born-Infeld gravity. Phys. Rev. D, 91(10), 104010–6pp.
Abstract: We consider a magnetic flux pointing in the z direction of an axially symmetric space-time (Melvin universe) in a Born-Infeld-type extension of general relativity (GR) formulated in the Palatini approach. Large magnetic fields could have been produced in the early Universe, and given rise to interesting phenomenology regarding wormholes and black hole remnants. We find a formal analytic solution to this problem that recovers the GR result in the appropriate limits. Our results set the basis for further extensions that could allow the embedding of pairs of black hole remnants in geometries with intense magnetic fields.
|
Mendoza, S., & Olmo, G. J. (2015). Astrophysical constraints and insights on extended relativistic gravity. Astrophys. Space Sci., 357(2), 133–6pp.
Abstract: We give precise details to support that observations of gravitational lensing at scales of individual, groups and clusters of galaxies can be understood in terms of nonNewtonian gravitational interactions with a relativistic structure compatible with the Einstein Equivalence Principle. This result is derived on very general grounds without knowing the underlying structure of the gravitational field equations. As such, any developed gravitational theory built to deal with these astrophysical scales needs to reproduce the obtained results of this article.
|
Bazeia, D., Lobao, A. S., Losano, L., Menezes, R., & Olmo, G. J. (2015). Braneworld solutions for modified theories of gravity with nonconstant curvature. Phys. Rev. D, 91(12), 124006–11pp.
Abstract: We study braneworld models in the presence of scalar field in a five-dimensional geometry with a single extra dimension of infinite extent, with gravity modified to include a function of the Ricci scalar. We develop a procedure that allows us to obtain an analytical solution for the braneworld configuration in a diversity of models, in the much harder case where the Ricci scalar is a nonconstant quantity.
|
Lobo, F. S. N., Olmo, G. J., & Rubiera-Garcia, D. (2015). Crystal clear lessons on the microstructure of spacetime and modified gravity. Phys. Rev. D, 91(12), 124001–7pp.
Abstract: We argue that a microscopic structure for spacetime such as that expected in a quantum foam scenario, in which microscopic wormholes and other topological structures should play a relevant role, might lead to an effective metric-affine geometry at larger scales. This idea is supported by the role that microscopic defects play in crystalline structures. With an explicit model, we show that wormhole formation is possible in a metric-affine scenario, where the wormhole and the matter fields play a role analogous to that of defects in crystals. Such wormholes also arise in Born-Infeld gravity, which is favored by an analogy with the estimated mass of a point defect in condensed matter systems. We also point out that in metric-affine geometries, Einstein's equations with an effective cosmological constant appear as an attractor in the vacuum limit for a vast family of theories of gravity. This illustrates how lessons from solid state physics can be useful in unveiling the properties of the microcosmos and defining new avenues for modified theories of gravity.
|
Olmo, G. J., & Rubiera-Garcia, D. (2015). The quantum, the geon and the crystal. Int. J. Mod. Phys. D, 24(9), 1542013–15pp.
Abstract: Effective geometries arising from a hypothetical discrete structure of spacetime can play an important role in the understanding of the gravitational physics beyond General Relativity (GR). To discuss this question, we make use of lessons from crystalline systems within solid state physics, where the presence of defects in the discrete microstructure of the crystal determine the kind of effective geometry needed to properly describe the system in the macroscopic continuum limit. In this work, we study metric-affine theories with nonmetricity and torsion, which are the gravitational analog of crystalline structures with point defects and dislocations. We consider a crystal-motivated gravitational action and show the presence of topologically nontrivial structures (wormholes) supported by an electromagnetic field. Their existence has important implications for the quantum foam picture and the effective gravitational geometries. We discuss how the dialogue between solid state physics systems and modified gravitational theories can provide useful insights on both sides.
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2015). Geodesic completeness in a wormhole spacetime with horizons. Phys. Rev. D, 92(4), 044047–16pp.
Abstract: The geometry of a spacetime containing a wormhole generated by a spherically symmetric electric field is investigated in detail. These solutions arise in high-energy extensions of general relativity formulated within the Palatini approach and coupled to Maxwell electrodynamics. Even though curvature divergences generically arise at the wormhole throat, we find that these spacetimes are geodesically complete. This provides an explicit example where curvature divergences do not imply spacetime singularities.
|
Bazeia, D., Losano, L., Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2015). Classical resolution of black hole singularities in arbitrary dimension. Phys. Rev. D, 92(4), 044018–15pp.
Abstract: A metric-affine approach is employed to study higher-dimensional modified gravity theories involving different powers and contractions of the Ricci tensor. It is shown that the field equations are always second-order, as opposed to the standard metric approach, where this is only achieved for Lagrangians of the Lovelock type. We point out that this property might have relevant implications for the AdS/CFT correspondence in black hole scenarios. We illustrate these aspects by considering the case of Born-Infeld gravity in d dimensions, where we work out exact solutions for electrovacuum configurations. Our results put forward that black hole singularities in arbitrary dimensions can be cured in a purely classical geometric scenario governed by second-order field equations.
|
Beltran Jimenez, J., Heisenberg, L., & Olmo, G. J. (2015). Tensor perturbations in a general class of Palatini theories. J. Cosmol. Astropart. Phys., 06(6), 026–16pp.
Abstract: We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the spacetime metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.
|
Bazeia, D., Losano, L., Menezes, R., Olmo, G. J., & Rubiera-Garcia, D. (2015). Robustness of braneworld scenarios against tensorial perturbations. Class. Quantum Gravity, 32(21), 215011–10pp.
Abstract: Inspired by the peculiarities of the effective geometry of crystalline structures, we reconsider thick brane scenarios from a metric-affine perspective. We show that for a rather general family of theories of gravity, whose Lagrangian is an arbitrary function of the metric and the Ricci tensor, the background and scalar field equations can be written in first-order form, and tensorial perturbations have a non negative definite spectrum, which makes them stable under linear perturbations regardless of the form of the gravity Lagrangian. We find, in particular, that the tensorial zero modes are exactly the same as predicted by Einstein's theory regardless of the scalar field and gravitational Lagrangians.
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Ringeval, C. (2015). Cascading dust inflation in Born-lnfeld gravity. J. Cosmol. Astropart. Phys., 11(11), 046–30pp.
Abstract: In the framework of Born-Infeld inspired gravity theories, which deviates from General Relativity (GR) in the high curvature regime, we discuss the viability of Cosmic Inflation without scalar fields. For energy densities higher than the new mass scale of the theory, a gravitating (lust component is shown to generically induce an accelerated expansion of the Universe. Within such a simple scenario, inflation gracefiffly exits when the CR regime is recovered, but the Universe would remain matter dominated. In order to implement a reheating era after inflation, we then consider inflation to be driven by a mixture of unstable dust species decaying into radiation. Because the speed of sound gravitates within the BornInfeld model under consideration, our scenario ends up being predictive on various open questions of the inflationary paradigm. The total number of e-folds of acceleration is given by the lifetime of the unstable dust components and is related to the duration of reheating. As a result, inflation does not last much longer than the number of e-folds of deceleration allowing a small spatial curvature and large scale deviations to isotropy to be observable today. Energy densities are self-regulated as inflation can only start for a total energy density less than a threshold value, again related to the species' lifetime. Above this threshold, the Universe may bc nee thereby avoiding a singularity. Another distinctive feature is that the accelerated expansion is of the superinflationary ldnd, namely the first Hubble flow function is negative. We show however that the tensor modes are never excited and the tensor-to-scalar ratio is always vanishing, independently of the energy scale of inflation.
|