Lobo, F. S. N., Martinez-Asencio, J., Olmo, G. J., & Rubiera-Garcia, D. (2014). Planck scale physics and topology change through an exactly solvable model. Phys. Lett. B, 731, 163–167.
Abstract: We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Rubiera-Garcia, D. (2018). Born-Infeld inspired modifications of gravity. Phys. Rep., 727, 1–129.
Abstract: General Relativity has shown an outstanding observational success in the scales where it has been directly tested. However, modifications have been intensively explored in the regimes where it seems either incomplete or signals its own limit of validity. In particular, the breakdown of unitarity near the Planck scale strongly suggests that General Relativity needs to be modified at high energies and quantum gravity effects are expected to be important. This is related to the existence of spacetime singularities when the solutions of General Relativity are extrapolated to regimes where curvatures are large. In this sense, Born-Infeld inspired modifications of gravity have shown an extraordinary ability to regularise the gravitational dynamics, leading to non-singular cosmologies and regular black hole spacetimes in a very robust manner and without resorting to quantum gravity effects. This has boosted the interest in these theories in applications to stellar structure, compact objects, inflationary scenarios, cosmological singularities, and black hole and wormhole physics, among others. We review the motivations, various formulations, and main results achieved within these theories, including their observational viability, and provide an overview of current open problems and future research opportunities.
|
Guendelman, E. I., Olmo, G. J., Rubiera-Garcia, D., & Vasihoun, M. (2013). Nonsingular electrovacuum solutions with dynamically generated cosmological constant. Phys. Lett. B, 726(4-5), 870–875.
Abstract: We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.
|
Olmo, G. J. (2012). Birkhoff's theorem and perturbations in f(R) theories. Ann. Phys.-Berlin, 524(5), 87–88.
|
Mendoza, S., & Olmo, G. J. (2015). Astrophysical constraints and insights on extended relativistic gravity. Astrophys. Space Sci., 357(2), 133–6pp.
Abstract: We give precise details to support that observations of gravitational lensing at scales of individual, groups and clusters of galaxies can be understood in terms of nonNewtonian gravitational interactions with a relativistic structure compatible with the Einstein Equivalence Principle. This result is derived on very general grounds without knowing the underlying structure of the gravitational field equations. As such, any developed gravitational theory built to deal with these astrophysical scales needs to reproduce the obtained results of this article.
|
Bazeia, D., Losano, L., & Olmo, G. J. (2018). Novel connection between lump-like structures and quantum mechanics. Eur. Phys. J. Plus, 133(7), 251–10pp.
Abstract: This work deals with lump-like structures in models described by a single real scalar field in two-dimensional spacetime. We start with a model that supports lump-like configurations and use the deformation procedure to construct scalar field theories that support both lumps and kinks, with the corresponding stability investigation giving rise to new physical systems. Very interestingly, we find models that support stable topological solutions, with the stability potential being able to support a tower of non-negative bound states, generating distinct families of potentials of current interest to quantum mechanics. We also describe models where the lump-like solutions give rise to stability potentials that have the shape of a double well.
|
Magalhaes, R. B., Maso-Ferrando, A. S., Bombacigno, F., Olmo, G. J., & Crispino, L. C. B. (2024). Echoes from bounded universes. Phys. Rev. D, 110(4), 044058–21pp.
Abstract: We construct a general class of modified Ellis-Bronnikov wormholes, where one asymptotic Minkowski region is replaced by a bounded 2-sphere core, characterized by an asymptotic finite areal radius. We pursue an in-depth analysis of the resulting geometry, outlining that geodesic completeness is also guaranteed when the area function asymptotically shrinks to zero. Moreover, we perform an analysis of the circular orbits present in our model and conclude that stable circular orbits are allowed in the bounded region. As a consequence, a stable light ring may exist in the inner region and trapped orbits may appear within this bounded region. Such internal structure suggests that the bounded region can trap perturbations. Then, we study the evolution of scalar perturbations, bringing out how these geometric configurations can in principle affect the time-domain profiles of quasinormal modes, pointing out the distinctive features with respect to other black hole or wormhole geometries.
|
Batool, A., Malik Sultan, A., Olmo, G. J., & Rubiera-Garcia, D. (2024). Stellar structure in f(R,T) gravity: Some exact solutions. Phys. Rev. D, 110(6), 064059–6pp.
Abstract: We find some exact solutions for constant-density and quark matter equations of state in stellar structure models framed within the f(R, T) = R + lambda(KT)-T-2 theory of gravity, where R is the curvature scalar, T the trace of the stress-energy tensor, and lambda some constant. These solutions correspond to specific values of the constant lambda and represent different compactness states of the corresponding stars, though only those made of quark matter can be regarded as physical. The latter modify the compactness (Buchdahl) limit of neutron stars upward for lambda > 0 until saturating the one of black holes. Our results show that it is possible to find useful insights on stellar structure in this class of theories, a fact that could be used for obtaining constraints on limiting masses such as the minimum hydrogen burning mass.
|
Mora-Perez, G., Olmo, G. J., Rubiera-Garcia, D., & Saez-Chillon Gomez, D. (2024). Boundary terms and on-shell action in Ricci-based gravity theories: The Hamiltonian formulation. Phys. Rev. D, 110(8), 084051–11pp.
Abstract: Considering the so-called Ricci-based gravity theories, a family of extensions of general relativity whose action is given by a nonlinear function of contractions and products of the (symmetric part of the) Ricci tensor of an independent connection, the Hamiltonian formulation of the theory is obtained. To do so, the independent connection is decomposed in two parts, one compatible with a metric tensor and the other one given by a 3-rank tensor. Subsequently, the Riemann tensor is expressed in terms of its projected components onto a hypersurface, allowing one to construct the 3 & thorn; 1 decomposition of the theory and the corresponding Gauss-Codazzi relations, where the boundary terms naturally arise in the gravitational action. Finally, the Arnowitt-Deser-Misner (ADM) decomposition is followed in order to construct the corresponding Hamiltonian and the ADM energy for any Ricci-based gravity theory. The formalism is applied to the simple case of Schwarzschild spacetime.
|
Maso-Ferrando, A., Sanchis-Gual, N., Font, J. A., & Olmo, G. J. (2024). Numerical evolutions of boson stars in Palatini f(R) gravity. Phys. Rev. D, 109(4), 044042–14pp.
Abstract: We investigate the time evolution of spherically symmetric boson stars in Palatini f(R) gravity through numerical relativity computations. Employing a novel approach that establishes a correspondence between modified gravity with scalar matter and general relativity with modified scalar matter, we are able to use the techniques of numerical relativity to simulate these systems. Specifically, we focus on the quadratic theory f(R) = R + xi R2 and compare the obtained solutions with those in general relativity, exploring both positive and negative values of the coupling parameter xi. Our findings reveal that boson stars in Palatini f(R) gravity exhibit both stable and unstable evolutions. The latter give rise to three distinct scenarios: migration toward a stable configuration, complete dispersion, and gravitational collapse leading to the formation of a baby universe structure.
|