|
Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2010). Hawking Radiation by Kerr Black Holes and Conformal Symmetry. Phys. Rev. Lett., 105(21), 211305–4pp.
Abstract: The exponential blueshift associated with the event horizon of a black hole makes conformal symmetry play a fundamental role in accounting for its thermal properties. Using a derivation based on two-point functions, we show that the full spectrum of thermal radiation of scalar particles by Kerr black holes can be explicitly derived on the basis of a conformal symmetry arising in the wave equation near the horizon. The simplicity of our approach emphasizes the depth of the connection between conformal symmetry and black hole radiance.
|
|
|
Barragan, C., & Olmo, G. J. (2010). Isotropic and anisotropic bouncing cosmologies in Palatini gravity. Phys. Rev. D, 82(8), 084015–15pp.
Abstract: We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R, R μnu R μnu) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R + aR(2)/R-P + R μnu R μnu/R-P exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.
|
|
|
Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2010). Reply to "Comment on 'Insensitivity of Hawking radiation to an invariant Planck-scale cutoff' ''. Phys. Rev. D, 81(10), 108502–3pp.
Abstract: We clarify the relationship between the conclusions of the previous Comment of A. Helfer [A. Helfer, preceding Comment, Phys. Rev. D 81, 108501 (2010)] and that of our Brief Report [I. Agullo, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. D 80, 047503 (2009).].
|
|
|
Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2010). Revising the observable consequences of slow-roll inflation. Phys. Rev. D, 81(4), 043514–14pp.
Abstract: We study the generation of primordial perturbations in a (single-field) slow-roll inflationary Universe. In momentum space, these (Gaussian) perturbations are characterized by a zero mean and a nonzero variance Delta(2) (k, t). However, in position space the variance diverges in the ultraviolet. The requirement of a finite variance in position space forces one to regularize Delta(2) (k, t). This can (and should) be achieved by proper renormalization in an expanding Universe in a unique way. This affects the predicted scalar and tensorial power spectra (evaluated when the modes acquire classical properties) for wavelengths that today are at observable scales. As a consequence, the imprint of slow-roll inflation on the cosmic microwave background anisotropies is significantly altered. We find a nontrivial change in the consistency condition that relates the tensor-to-scalar ratio r to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n(t) = 0, is now compatible with a nonzero ratio r approximate to 0.12 +/- 0.06, which is forbidden by the standard prediction (r = -8n(t)). The influence of relic gravitational waves on the cosmic microwave background may soon come within the range of planned measurements, offering a nontrivial test of the new predictions.
|
|
|
Sepehri, A., Pincak, R., & Olmo, G. J. (2017). M-theory, graphene-branes and superconducting wormholes. Int. J. Geom. Methods Mod. Phys., 14(11), 1750167–32pp.
Abstract: Exploiting an M-brane system whose structure and symmetries are inspired by those of graphene (what we call a graphene-brane), we propose here a similitude between two layers of graphene joined by a nanotube and wormholes scenarios in the brane world. By using the symmetries and mathematical properties of the M-brane system, we show here how to possibly increase its conductivity, to the point of making it as a superconductor. The questions of whether and under which condition this might point to the corresponding real graphene structures becoming superconducting are briefly outlined.
|
|
|
Almeida, C. A. S., Lima, F. C. E., Mishra, S. S., Olmo, G. J., & Sahoo, P. K. (2024). Thick brane in mimetic-like gravity. Nucl. Phys. B, 1009, 116747–9pp.
Abstract: We analyze a five-dimensional braneworld governed by a mimetic-like gravity, a plausible candidate for explaining dark matter. Within this scenario, we examine Friedmann-Lemaitre-Robertson-Walker (FLRW) branes and find that constant curvature and Minkowskian solutions are possible. We then show that the mimetic model leads to kink-like and lump-like thick brane solutions without the need for spontaneous symmetry breaking. Its stability against small perturbations is also verified.
|
|
|
Olmo, G. J. (2012). Birkhoff's theorem and perturbations in f(R) theories. Ann. Phys.-Berlin, 524(5), 87–88.
|
|