Delhom-Latorre, A., Olmo, G. J., & Ronco, M. (2018). Observable traces of non-metricity: New constraints on metric-affine gravity. Phys. Lett. B, 780, 294–299.
Abstract: Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-metricity may allow to explore new physics associated with defects in a hypothetical space-time microstructure. Here we show that non-metricity produces observable effects in quantum fields in the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained represents an improvement of several orders of magnitude to previous experimental constraints.
|
Izadi, A., Shacker, S. S., Olmo, G. J., & Banerjee, R. (2018). Observational effects of varying speed of light in quadratic gravity cosmological models. Int. J. Geom. Methods Mod. Phys., 15(5), 1850084–16pp.
Abstract: We study different manifestations of the speed of light in theories of gravity where metric and connection are regarded as independent fields. We find that for a generic gravity theory in a frame with locally vanishing affine connection, the usual degeneracy between different manifestations of the speed of light is broken. In particular, the space-time causal structure constant (c(ST)) may become variable in that local frame. For theories of the form f(R, R-mu nu R-mu nu), this variation in c(ST) has an impact on the definition of the luminosity distance (and distance modulus), which can be used to confront the predictions of particular models against Supernovae type Ia (SN Ia) data. We carry out this test for a quadratic gravity model without cosmological constant assuming (i) a constant speed of light and (ii) a varying speed of light (VSL), and find that the latter scenario is favored by the data.
|
Beltran Jimenez, J., Heisenberg, L., Olmo, G. J., & Rubiera-Garcia, D. (2017). On gravitational waves in Born-Infeld inspired non-singular cosmologies. J. Cosmol. Astropart. Phys., 10(10), 029–23pp.
Abstract: We study the evolution of gravitational waves for non-singular cosmological solutions within the framework of Born-Infeld inspired gravity theories, with special emphasis on the Eddington-inspired Born-Infeld theory. We review the existence of two types of non-singular cosmologies, namely bouncing and asymptotically Minkowski solutions, from a perspective that makes their features more apparent. We study in detail the propagation of gravitational waves near these non-singular solutions and carefully discuss the origin and severity of the instabilities and strong coupling problems that appear. We also investigate the role of the adiabatic sound speed of the matter sector in the regularisation of the gravitational waves evolution. We extend our analysis to more general Born-Infeld inspired theories where analogous solutions are found. As a general conclusion, we obtain that the bouncing solutions are generally more prone to instabilities, while the asymptotically Minkowski solutions can be rendered stable, making them appealing models for the early universe.
|
Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2024). On metric-affine bumblebee model coupled to scalar matter. Nucl. Phys. B, 1004, 116577–10pp.
Abstract: We consider the coupling of the metric-affine bumblebee gravity model to scalar matter and calculate the lower -order contributions to two -point functions of bumblebee and scalar fields in the weak gravity approximation. We also obtain the one -loop effective potentials for both scalar and vector fields.
|
Olmo, G. J. (2011). Palatini actions and quantum gravity phenomenology. J. Cosmol. Astropart. Phys., 10(10), 018–15pp.
Abstract: We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmologies of this model also avoid the big bang singularity by means of a big bounce.
|
Olmo, G. J. (2011). Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D, 20(4), 413–462.
Abstract: We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
|
Olmo, G. J., & Rubiera-Garcia, D. (2011). Palatini f(R) black holes in nonlinear electrodynamics. Phys. Rev. D, 84(12), 124059–14pp.
Abstract: The electrically charged Born-Infeld black holes in the Palatini formalism for f(R) theories are analyzed. Specifically we study those supported by a theory f(R) = R +/- R(2)/R(P), where R(P) is Planck's curvature. These black holes only differ from their General Relativity counterparts very close to the center but may give rise to different geometrical structures in terms of inner horizons. The nature and strength of the central singularities are also significantly affected. In particular, for the model f(R) = R – R(2)/R(P) the singularity is shifted to a finite radius, r(+), and the Kretschmann scalar diverges only as 1/(r-r(+))(2).
|
Bejarano, C., Lobo, F. S. N., Olmo, G. J., & Rubiera-Garcia, D. (2017). Palatini wormholes and energy conditions from the prism of general relativity. Eur. Phys. J. C, 77(11), 776–13pp.
Abstract: Wormholes are hypothetical shortcuts in space-time that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.
|
Olmo, G. J., Rubiera-Garcia, D., & Wojnar, A. (2021). Parameterized nonrelativistic limit of stellar structure equations in Ricci-based gravity theories. Phys. Rev. D, 104(2), 024045–8pp.
Abstract: We present the nonrelativistic limit of the stellar structure equations of Ricci-based gravities, a family of metric-affine theories whose Lagrangian is built via contractions of the metric with the Ricci tensor of an a priori independent connection. We find that this limit is characterized by four parameters that arise in the expansion of several geometric quantities in powers of the stress-energy tensor of the matter fields. We discuss the relevance of this result for the phenomenology of nonrelativistic stars, such as main-sequence stars as well as several substellar objects.
|
Dias da Silva, L. F., Lobo, F. S. N., Olmo, G. J., & Rubiera-Garcia, D. (2023). Photon rings as tests for alternative spherically symmetric geometries with thin accretion disks. Phys. Rev. D, 108(8), 084055–18pp.
Abstract: The imaging by the Event Horizon Telescope (EHT) of the supermassive central objects at the heart of the M87 and Milky Way (Sgr A*) galaxies, has marked the first step into peering at the photon rings and central brightness depression that characterize the optical appearance of black holes surrounded by an accretion disk. Recently, Vagnozzi et al. [arXiv:2205.07787] used the claim by the EHT that the size of the shadow of Sgr A* can be inferred by calibrated measurements of the bright ring enclosing it, to constrain a large number of spherically symmetric space-time geometries. In this work we use this result to study some features of the first and second photon rings of a restricted pool of such geometries in thin accretion disk settings. The emission profile of the latter is described by calling upon three analytic samples belonging to the family introduced by Gralla, Lupsasca, and Marrone, in order to characterize such photon rings using the Lyapunov exponent of nearly bound orbits and discuss its correlation with the luminosity extinction rate between the first and second photon rings. We finally elaborate on the chances of using such photon rings as observational discriminators of alternative black hole geometries using very long baseline interferometry.
|