Olmo, G. J., & Rubiera-Garcia, D. (2011). Palatini f(R) black holes in nonlinear electrodynamics. Phys. Rev. D, 84(12), 124059–14pp.
Abstract: The electrically charged Born-Infeld black holes in the Palatini formalism for f(R) theories are analyzed. Specifically we study those supported by a theory f(R) = R +/- R(2)/R(P), where R(P) is Planck's curvature. These black holes only differ from their General Relativity counterparts very close to the center but may give rise to different geometrical structures in terms of inner horizons. The nature and strength of the central singularities are also significantly affected. In particular, for the model f(R) = R – R(2)/R(P) the singularity is shifted to a finite radius, r(+), and the Kretschmann scalar diverges only as 1/(r-r(+))(2).
|
Harko, T., Koivisto, T. S., Lobo, F. S. N., & Olmo, G. J. (2012). Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D, 85(8), 084016–5pp.
Abstract: We present a novel approach to modified theories of gravity which consists of adding to the Einstein-Hilbert Lagrangian an f(R) term constructed a la Palatini. Using the respective dynamically equivalent scalar-tensor representation, we show that the theory can pass the Solar System observational constraints even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic dynamics but leaves the Solar System unaffected. We also verify the absence of instabilities in perturbations and provide explicit models which are consistent with local tests and lead to the late-time cosmic acceleration.
|
Olmo, G. J., & Rubiera-Garcia, D. (2012). Reissner-Nordstrom black holes in extended Palatini theories. Phys. Rev. D, 86(4), 044014–15pp.
Abstract: We study static, spherically symmetric solutions with an electric field in an extension of general relativity containing a Ricci-squared term and formulated in the Palatini formalism. We find that all the solutions present a central core whose area is proportional to the Planck area times the number of charges. Far from the core, curvature invariants quickly tend to those of the usual Reissner-Nordstrom solution, though the structure of horizons may be different. In fact, besides the structures found in the Reissner-Nordstrom solution of general relativity, we find black hole solutions with just one nondegenerate horizon (Schwarzschild-like) and nonsingular black holes and naked cores. The charge-to-mass ratio of the nonsingular solutions implies that the core matter density is independent of the specific amounts of charge and mass and of order the Planck density. We discuss the physical implications of these results for astrophysical and microscopic black holes, construct the Penrose diagrams of some illustrative cases, and show that the maximal analytical extension of the nonsingular solutions implies a bounce of the radial coordinate.
|
Martinez-Asencio, J., Olmo, G. J., & Rubiera-Garcia, D. (2012). Black hole formation from a null fluid in extended Palatini gravity. Phys. Rev. D, 86(10), 104010–8pp.
Abstract: We study the formation and perturbation of black holes by null fluxes of neutral matter in a quadratic extension of general relativity formulated a la Palatini. Working in a spherically symmetric space-time, we obtain an exact analytical solution for the metric that extends the usual Vaidya-type solution to this type of theory. We find that the resulting space-time is formally that of a Reissner-Nordstrom black hole but with an effective charge term carrying the wrong sign in front of it. This effective charge is directly related to the luminosity function of the radiation stream. When the ingoing flux vanishes, the charge term disappears and the space-time relaxes to that of a Schwarzschild black hole. We provide two examples that illustrate the formation of a black hole from Minkowski space and the perturbation by a finite pulse of radiation of an existing Schwarzschild black hole.
|
Olmo, G. J., Sanchis-Alepuz, H., & Tripathi, S. (2012). Stellar structure equations in extended Palatini gravity. Phys. Rev. D, 86(10), 104039–8pp.
Abstract: We consider static spherically symmetric stellar configurations in Palatini theories of gravity in which the Lagrangian is an unspecified function of the form f(R, R μnu R μnu). We obtain the Tolman-Oppenheimer-Volkov equations corresponding to this class of theories and show that they recover those of f(R) theories and general relativity in the appropriate limits. We show that the exterior vacuum solutions are of Schwarzschild-de Sitter type and comment on the possible expected modifications, as compared to general relativity, of the interior solutions.
|
Capozziello, S., Harko, T., Koivisto, T. S., Lobo, F. S. N., & Olmo, G. J. (2012). Wormholes supported by hybrid metric-Palatini gravity. Phys. Rev. D, 86(12), 127504–5pp.
Abstract: Recently, a modified theory of gravity was presented, which consists of the superposition of the metric Einstein-Hilbert Lagrangian with an f(R) term constructed a la Palatini. The theory possesses extremely interesting features such as predicting the existence of a long-range scalar field, that explains the late-time cosmic acceleration and passes the local tests, even in the presence of a light scalar field. In this brief report, we consider the possibility that wormholes are supported by this hybrid metric-Palatini gravitational theory. We present here the general conditions for wormhole solutions according to the null energy conditions at the throat and find specific examples. In the first solution, we specify the redshift function, the scalar field and choose the potential that simplifies the modified Klein-Gordon equation. This solution is not asymptotically flat and needs to be matched to a vacuum solution. In the second example, by adequately specifying the metric functions and choosing the scalar field, we find an asymptotically flat spacetime.
|
Olmo, G. J., & Rubiera-Garcia, D. (2013). Importance of torsion and invariant volumes in Palatini theories of gravity. Phys. Rev. D, 88(8), 084030–11pp.
Abstract: We study the field equations of extensions of general relativity formulated within a metric-affine formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or after considering variations of the action. Considering a generic family of Ricci-squared theories, we show that in both cases the connection can be decomposed as the sum of a Levi-Civita connection and terms depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this, we find that the Levi-Civita part of the connection is due to the existence of an invariant volume associated with an auxiliary metric h(mu v), which is algebraically related with the physical metric g(mu v).
|
Bazeia, D., Losano, L., Olmo, G. J., & Rubiera-Garcia, D. (2014). Black holes in five-dimensional Palatini f(R) gravity and implications for the AdS/CFT correspondence. Phys. Rev. D, 90(4), 044011–8pp.
Abstract: We show that theories having second-order field equations in the context of higher-dimensional modified gravity are not restricted to the family of Lovelock Lagrangians, but can also be obtained if no a priori assumption on the relation between the metric and affine structures of space-time is made (the Palatini approach). We illustrate this fact by considering the case of Palatini f(R) gravities in five dimensions. Our results provide an alternative avenue to explore new domains of the AdS/CFT correspondence without resorting to ad hoc quasitopological constructions.
|
Odintsov, S. D., Olmo, G. J., & Rubiera-Garcia, D. (2014). Born-Infeld gravity and its functional extensions. Phys. Rev. D, 90(4), 044003–8pp.
Abstract: We investigate the dynamics of a family of functional extensions of the (Eddington-inspired) Born-Infeld gravity theory, constructed with the inverse of the metric and the Ricci tensor. We provide a generic formal solution for the connection and an Einstein-like representation for the metric field equations of this family of theories. For particular cases we consider applications to the early-time cosmology and find that nonsingular universes with a cosmic bounce are very generic and robust solutions.
|
Makarenko, A. N., Odintsov, S., & Olmo, G. J. (2014). Born-Infeld f(R) gravity. Phys. Rev. D, 90(2), 024066–15pp.
Abstract: Motivated by the properties of matter quantum fields in curved space-times, we work out a gravity theory that combines the Born-Infeld gravity Lagrangian with an f(R) piece. To avoid ghostlike instabilities, the theory is formulated within the Palatini approach. This construction provides more freedom to address a number of important questions, such as the dynamics of the early Universe and the cosmic accelerated expansion, among others. In particular, we consider the effect that adding an f(R) = aR(2) term has on the early-time cosmology. We find that bouncing solutions are robust against these modifications of the Lagrangian whereas the solutions with loitering behavior of the original Born-Infeld theory are very sensitive to the R-2 term. In fact, these solutions are modified in such a way that a plateau in the H-2 function may arise, yielding a period of (approximately) de Sitter inflationary expansion. This inflationary behavior may be found even in a radiation-dominated universe.
|