Delhom, A., Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2021). Metric-affine bumblebee gravity: classical aspects. Eur. Phys. J. C, 81(4), 287–10pp.
Abstract: We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the post-Minkowskian, weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric, and then we explore the physical properties of the VEV of the bumblebee field, focusing mainly on the dispersion relations and the stability of the resulting effective theory.
|
Maluf, R. V., Mora-Perez, G., Olmo, G. J., & Rubiera-Garcia, D. (2024). Nonsingular, Lump-like, Scalar Compact Objects in (2+1)-Dimensional Einstein Gravity. Universe, 10(6), 258–13pp.
Abstract: We study the space-time geometry generated by coupling a free scalar field with a noncanonical kinetic term to general relativity in (2+1) dimensions. After identifying a family of scalar Lagrangians that yield exact analytical solutions in static and circularly symmetric scenarios, we classify the various types of solutions and focus on a branch that yields asymptotically flat geometries. We show that the solutions within such a branch can be divided in two types, namely naked singularities and nonsingular objects without a center. In the latter, the energy density is localized around a maximum and vanishes only at infinity and at an inner boundary. This boundary has vanishing curvatures and cannot be reached by any time-like or null geodesic in finite affine time. This allows us to consistently interpret such solutions as nonsingular, lump-like, static compact scalar objects whose eventual extension to the (3+1)-dimensional context could provide structures of astrophysical interest.
|
Bazeia, D., Losano, L., & Olmo, G. J. (2018). Novel connection between lump-like structures and quantum mechanics. Eur. Phys. J. Plus, 133(7), 251–10pp.
Abstract: This work deals with lump-like structures in models described by a single real scalar field in two-dimensional spacetime. We start with a model that supports lump-like configurations and use the deformation procedure to construct scalar field theories that support both lumps and kinks, with the corresponding stability investigation giving rise to new physical systems. Very interestingly, we find models that support stable topological solutions, with the stability potential being able to support a tower of non-negative bound states, generating distinct families of potentials of current interest to quantum mechanics. We also describe models where the lump-like solutions give rise to stability potentials that have the shape of a double well.
|
Lobo, F. S. N., Martinez-Asencio, J., Olmo, G. J., & Rubiera-Garcia, D. (2014). Planck scale physics and topology change through an exactly solvable model. Phys. Lett. B, 731, 163–167.
Abstract: We consider the collapse of a charged radiation fluid in a Planck-suppressed quadratic extension of General Relativity (GR) formulated A la Palatini. We obtain exact analytical solutions that extend the charged Vaidya-type solution of GR, which allows to explore in detail new physics at the Planck scale. Starting from Minkowski space, we find that the collapsing fluid generates wormholes supported by the electric field. We discuss the relevance of our findings in relation to the quantum foam structure of space-time and the meaning of curvature divergences in this theory.
|
Delhom, A., Olmo, G. J., & Orazi, E. (2019). Ricci-Based Gravity theories and their impact on Maxwell and nonlinear electromagnetic models. J. High Energy Phys., 11(11), 149–24pp.
Abstract: We extend the correspondence between metric-affine Ricci-Based Gravity the- ories and General Relativity (GR) to the case in which the matter sector is represented by linear and nonlinear electromagnetic fields. This complements previous studies focused on fluids and scalar fields. We establish the general algorithm that relates the matter fields in the GR and RBG frames and consider some applications. In particular, we find that the so-called Eddington-inspired Born-Infeld gravity theory coupled to Maxwell electromag- netism is in direct correspondence with GR coupled to Born-Infeld electromagnetism. We comment on the potential phenomenological implications of this relation.
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2016). Classical resolution of black hole singularities via wormholes. Eur. Phys. J. C, 76(3), 143–6pp.
Abstract: In certain extensions of General Relativity, wormholes generated by spherically symmetric electric fields can resolve black hole singularities without necessarily removing curvature divergences. This is shown by studying geodesic completeness, the behavior of time-like congruences going through the divergent region, and by means of scattering of waves off the wormhole. This provides an example of the logical independence between curvature divergences and space-time singularities, concepts very often identified with each other in the literature.
|
Mendoza, S., & Olmo, G. J. (2015). Astrophysical constraints and insights on extended relativistic gravity. Astrophys. Space Sci., 357(2), 133–6pp.
Abstract: We give precise details to support that observations of gravitational lensing at scales of individual, groups and clusters of galaxies can be understood in terms of nonNewtonian gravitational interactions with a relativistic structure compatible with the Einstein Equivalence Principle. This result is derived on very general grounds without knowing the underlying structure of the gravitational field equations. As such, any developed gravitational theory built to deal with these astrophysical scales needs to reproduce the obtained results of this article.
|
Magalhaes, R. B., Ribeiro, G. P., Lima, H. C. D. J., Olmo, G. J., & Crispino, L. C. B. (2024). Singular space-times with bounded algebraic curvature scalars. J. Cosmol. Astropart. Phys., 05(5), 114–34pp.
Abstract: We show that the absence of unbounded algebraic curvature invariants constructed from polynomials of the Riemann tensor cannot guarantee the absence of strong singularities. As a consequence, it is not sufficient to rely solely on the analysis of such scalars to assess the regularity of a given space-time. This conclusion follows from the analysis of incomplete geodesics within the internal region of asymmetric wormholes supported by scalar matter which arise in two distinct metric-affine gravity theories. These wormholes have bounded algebraic curvature scalars everywhere, which highlights that their finiteness does not prevent the emergence of pathologies (singularities) in the geodesic structure of space-time. By analyzing the tidal forces in the internal wormhole region, we find that the angular components are unbounded along incomplete radial time-like geodesics. The strength of the singularity is determined by the evolution of Jacobi fields along such geodesics, finding that it is of strong type, as volume elements are torn apart as the singularity is approached. Lastly, and for completeness, we consider the wormhole of the quadratic Palatini theory and present an analysis of the tidal forces in the entire space-time.
|
Alencar, G., Estrada, M., Muniz, C. R., & Olmo, G. J. (2023). Dymnikova GUP-corrected black holes. J. Cosmol. Astropart. Phys., 11(11), 100–23pp.
Abstract: We consider the impact of Generalized Uncertainty Principle (GUP) effects on the Dymnikova regular black hole. The minimum length scale introduced by the GUP modifies the energy density associated with the gravitational source, referred to as the Dymnikova vacuum, based on its analogy with the gravitational counterpart of the Schwinger effect. We present an approximated analytical solution (together with exact numerical results for comparison) that encompasses a wide range of black hole sizes, whose properties crucially depend on the ratio between the de Sitter core radius and the GUP scale. The emergence of a wormhole inside the de Sitter core in the innermost region of the object is one of the most relevant features of this family of solutions. Our findings demonstrate that these solutions remain singularity free, confirming the robustness of the Dymnikova regular black hole under GUP corrections. Regarding energy conditions, we find that the violation of the strong, weak, and null energy conditions which is characteristic of the pure Dymnikova case does not occur at Planckian scales in the GUP corrected solution. This contrast suggests a departure from conventional expectations and highlights the influence of quantum corrections and the GUP in modifying the energy conditions near the Planck scale.
|
Olmo, G. J. (2012). Birkhoff's theorem and perturbations in f(R) theories. Ann. Phys.-Berlin, 524(5), 87–88.
|