Delhom, A., Lobo, I. P., Olmo, G. J., & Romero, C. (2019). A generalized Weyl structure with arbitrary non-metricity. Eur. Phys. J. C, 79(10), 878–9pp.
Abstract: A Weyl structure is usually defined by an equivalence class of pairs (g, omega) related by Weyl transformations, which preserve the relation del g = omega circle times g, where g and omega denote the metric tensor and a 1-form field. An equivalent way of defining such a structure is as an equivalence class of conformally related metrics with a unique affine connection Gamma((omega)), which is invariant under Weyl transformations. In a standard Weyl structure, this unique connection is assumed to be torsion-free and have vectorial non-metricity. This second view allows us to present two different generalizations of standard Weyl structures. The first one relies on conformal symmetry while allowing for a general non-metricity tensor, and the other comes from extending the symmetry to arbitrary (disformal) transformations of the metric.
|
Guendelman, E. I., Olmo, G. J., Rubiera-Garcia, D., & Vasihoun, M. (2013). Nonsingular electrovacuum solutions with dynamically generated cosmological constant. Phys. Lett. B, 726(4-5), 870–875.
Abstract: We consider static spherically symmetric configurations in a Palatini extension of General Relativity including R-2 and Ricci-squared terms, which is known to replace the central singularity by a wormhole in the electrovacuum case. We modify the matter sector of the theory by adding to the usual Maxwell term a nonlinear electromagnetic extension which is known to implement a confinement mechanism in flat space. One feature of the resulting theory is that the nonlinear electric field leads to a dynamically generated cosmological constant. We show that with this matter source the solutions of the model are asymptotically de Sitter and possess a wormhole topology. We discuss in some detail the conditions that guarantee the absence of singularities and of traversable wormholes.
|
Afonso, V. I., Olmo, G. J., Orazi, E., & Rubiera-Garcia, D. (2018). Mapping nonlinear gravity into General Relativity with nonlinear electrodynamics. Eur. Phys. J. C, 78(10), 866–11pp.
Abstract: We show that families of nonlinear gravity theories formulated in a metric-affine approach and coupled to a nonlinear theory of electrodynamics can be mapped into general relativity (GR) coupled to another nonlinear theory of electrodynamics. This allows to generate solutions of the former from those of the latter using purely algebraic transformations. This correspondence is explicitly illustrated with the Eddington-inspired Born-Infeld theory of gravity, for which we consider a family of nonlinear electrodynamics and show that, under the map, preserve their algebraic structure. For the particular case of Maxwell electrodynamics coupled to Born-Infeld gravity we find, via this correspondence, a Born-Infeld-type nonlinear electrodynamics on the GR side. Solving the spherically symmetric electrovacuum case for the latter, we show how the map provides directly the right solutions for the former. This procedure opens a new door to explore astrophysical and cosmological scenarios in nonlinear gravity theories by exploiting the full power of the analytical and numerical methods developed within the framework of GR.
|
Guerrero, M., Olmo, G. J., & Rubiera-Garcia, D. (2023). Geodesic completeness of effective null geodesics in regular space-times with non-linear electrodynamics. Eur. Phys. J. C, 83(9), 785–8pp.
Abstract: We study the completeness of light trajectories in certain spherically symmetric regular geometries found in Palatini theories of gravity threaded by non-linear (electromagnetic) fields, which makes their propagation to happen along geodesics of an effective metric. Two types of geodesic restoration mechanisms are employed: by pushing the focal point to infinite affine distance, thus unreachable in finite time by any sets of geodesics, or by the presence of a defocusing surface associated to the development of a wormhole throat. We discuss several examples of such geometries to conclude the completeness of all such effective paths. Our results are of interest both for the finding of singularity-free solutions and for the analysis of their optical appearances e.g. in shadow observations.
|
Bejarano, C., Lobo, F. S. N., Olmo, G. J., & Rubiera-Garcia, D. (2017). Palatini wormholes and energy conditions from the prism of general relativity. Eur. Phys. J. C, 77(11), 776–13pp.
Abstract: Wormholes are hypothetical shortcuts in space-time that in general relativity unavoidably violate all of the pointwise energy conditions. In this paper, we consider several wormhole spacetimes that, as opposed to the standard designer procedure frequently employed in the literature, arise directly from gravitational actions including additional terms resulting from contractions of the Ricci tensor with the metric, and which are formulated assuming independence between metric and connection (Palatini approach). We reinterpret such wormhole solutions under the prism of General Relativity and study the matter sources that thread them. We discuss the size of violation of the energy conditions in different cases and how this is related to the same spacetimes when viewed from the modified gravity side.
|
Bazeia, D., Losano, L., Menezes, R., Olmo, G. J., & Rubiera-Garcia, D. (2015). Thick brane in f(R) gravity with Palatini dynamics. Eur. Phys. J. C, 75, 569–10pp.
Abstract: This work deals with modified gravity in five dimensional spacetime. We study a thick Palatini f(R) brane, that is, a braneworld scenario described by an anti-de Sitter warped geometry with a single extra dimension of infinite extent, sourced by real scalar field under the Palatini approach, where the metric and the connection are regarded as independent degrees of freedom. We consider a first-order framework which we use to provide exact solutions for the scalar field and warp factor. We also investigate a perturbative scenario such that the Palatini approach is implemented through a Lagrangian f(R)=R+ϵR^n, where the small parameter ϵ controls the deviation from the standard thick brane case.
|
Delhom, A., Lobo, I. P., Olmo, G. J., & Romero, C. (2020). Conformally invariant proper time with general non-metricity. Eur. Phys. J. C, 80(5), 415–11pp.
Abstract: We show that the definition of proper time for Weyl-invariant space-times given by Perlick naturally extends to spaces with arbitrary non-metricity. We then discuss the relation between this generalized proper time and the Ehlers-Pirani-Schild definition of time when there is arbitrary non-metricity. Then we show how this generalized proper time suffers from a second clock effect. Assuming that muons are a device to measure this proper time, we constrain the non-metricity tensor on Earth's surface and then elaborate on the feasibility of such assumption.
|
Olmo, G. J. (2011). Palatini approach to modified gravity: f(R) theories and beyond. Int. J. Mod. Phys. D, 20(4), 413–462.
Abstract: We review the recent literature on modified theories of gravity in the Palatini approach. After discussing the motivations that lead to consider alternatives to Einstein's theory and to treat the metric and the connection as independent objects, we review several topics that have been recently studied within this framework. In particular, we provide an in-depth analysis of the cosmic speed-up problem, laboratory and solar system tests, the structure of stellar objects, the Cauchy problem, and bouncing cosmologies. We also discuss the importance of going beyond the f(R) models to capture other phenomenological aspects related with dark matter/energy and quantum gravity.
|
Delhom-Latorre, A., Olmo, G. J., & Ronco, M. (2018). Observable traces of non-metricity: New constraints on metric-affine gravity. Phys. Lett. B, 780, 294–299.
Abstract: Relaxing the Riemannian condition to incorporate geometric quantities such as torsion and non-metricity may allow to explore new physics associated with defects in a hypothetical space-time microstructure. Here we show that non-metricity produces observable effects in quantum fields in the form of 4-fermion contact interactions, thereby allowing us to constrain the scale of non-metricity to be greater than 1 TeV by using results on Bahbah scattering. Our analysis is carried out in the framework of a wide class of theories of gravity in the metric-affine approach. The bound obtained represents an improvement of several orders of magnitude to previous experimental constraints.
|
Delhom, A., Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2021). Metric-affine bumblebee gravity: classical aspects. Eur. Phys. J. C, 81(4), 287–10pp.
Abstract: We consider the metric-affine formulation of bumblebee gravity, derive the field equations, and show that the connection can be written as Levi-Civita of a disformally related metric in which the bumblebee field determines the disformal part. As a consequence, the bumblebee field gets coupled to all the other matter fields present in the theory, potentially leading to nontrivial phenomenological effects. To explore this issue we compute the post-Minkowskian, weak-field limit and study the resulting effective theory. In this scenario, we couple scalar and spinorial matter to the effective metric, and then we explore the physical properties of the VEV of the bumblebee field, focusing mainly on the dispersion relations and the stability of the resulting effective theory.
|