Mora-Perez, G., Olmo, G. J., Rubiera-Garcia, D., & Saez-Chillon Gomez, D. (2024). Boundary terms and on-shell action in Ricci-based gravity theories: The Hamiltonian formulation. Phys. Rev. D, 110(8), 084051–11pp.
Abstract: Considering the so-called Ricci-based gravity theories, a family of extensions of general relativity whose action is given by a nonlinear function of contractions and products of the (symmetric part of the) Ricci tensor of an independent connection, the Hamiltonian formulation of the theory is obtained. To do so, the independent connection is decomposed in two parts, one compatible with a metric tensor and the other one given by a 3-rank tensor. Subsequently, the Riemann tensor is expressed in terms of its projected components onto a hypersurface, allowing one to construct the 3 & thorn; 1 decomposition of the theory and the corresponding Gauss-Codazzi relations, where the boundary terms naturally arise in the gravitational action. Finally, the Arnowitt-Deser-Misner (ADM) decomposition is followed in order to construct the corresponding Hamiltonian and the ADM energy for any Ricci-based gravity theory. The formalism is applied to the simple case of Schwarzschild spacetime.
|
Harko, T., Koivisto, T. S., Lobo, F. S. N., Olmo, G. J., & Rubiera-Garcia, D. (2018). Coupling matter in modified Q gravity. Phys. Rev. D, 98(8), 084043–13pp.
Abstract: We present a novel theory of gravity by considering an extension of symmetric teleparallel gravity. This is done by introducing, in the framework of the metric-affine formalism, a new class of theories where the nonmetricity Q is nonminimally coupled to the matter Lagrangian. More specifically, we consider a Lagrangian of the form L similar to f(1)(Q) + f(2)(Q)L-M, where f(1) and f(2) are generic functions of Q, and L-M is the matter Lagrangian. This nonminimal coupling entails the nonconservation of the energy-momentum tensor, and consequently the appearance of an extra force. The formulation of the gravity sector in terms of the Q instead of the curvature may result in subtle improvements of the theory. In the context of nonminimal matter couplings, we are therefore motivated to explore whether the new geometrical formulation in terms of the Q, when implemented also in the matter sector, would allow more universally consistent and viable realizations of the nonminimal coupling. Furthermore, we consider several cosmological applications by presenting the evolution equations and imposing specific functional forms of the functions f(1)(Q) and f(2)(Q), such as power-law and exponential dependencies of the nonminimal couplings. Cosmological solutions are considered in two general classes of models, and found to feature accelerating expansion at late times.
|
Olmo, G. J., & Rubiera-Garcia, D. (2013). Importance of torsion and invariant volumes in Palatini theories of gravity. Phys. Rev. D, 88(8), 084030–11pp.
Abstract: We study the field equations of extensions of general relativity formulated within a metric-affine formalism setting torsion to zero (Palatini approach). We find that different (second-order) dynamical equations arise depending on whether torsion is set to zero (i) a priori or (ii) a posteriori, i.e., before or after considering variations of the action. Considering a generic family of Ricci-squared theories, we show that in both cases the connection can be decomposed as the sum of a Levi-Civita connection and terms depending on a vector field. However, while in case (i) this vector field is related to the symmetric part of the connection, in (ii) it comes from the torsion part and, therefore, it vanishes once torsion is completely removed. Moreover, the vanishing of this torsion-related vector field immediately implies the vanishing of the antisymmetric part of the Ricci tensor, which therefore plays no role in the dynamics. Related to this, we find that the Levi-Civita part of the connection is due to the existence of an invariant volume associated with an auxiliary metric h(mu v), which is algebraically related with the physical metric g(mu v).
|
Harko, T., Koivisto, T. S., Lobo, F. S. N., & Olmo, G. J. (2012). Metric-Palatini gravity unifying local constraints and late-time cosmic acceleration. Phys. Rev. D, 85(8), 084016–5pp.
Abstract: We present a novel approach to modified theories of gravity which consists of adding to the Einstein-Hilbert Lagrangian an f(R) term constructed a la Palatini. Using the respective dynamically equivalent scalar-tensor representation, we show that the theory can pass the Solar System observational constraints even if the scalar field is very light. This implies the existence of a long-range scalar field, which is able to modify the cosmological and galactic dynamics but leaves the Solar System unaffected. We also verify the absence of instabilities in perturbations and provide explicit models which are consistent with local tests and lead to the late-time cosmic acceleration.
|
Barragan, C., & Olmo, G. J. (2010). Isotropic and anisotropic bouncing cosmologies in Palatini gravity. Phys. Rev. D, 82(8), 084015–15pp.
Abstract: We study isotropic and anisotropic (Bianchi I) cosmologies in Palatini f(R) and f(R, R μnu R μnu) theories of gravity with a perfect fluid and consider the existence of nonsingular bouncing solutions in the early universe. We find that all f(R) models with isotropic bouncing solutions develop shear singularities in the anisotropic case. On the contrary, the simple quadratic model R + aR(2)/R-P + R μnu R μnu/R-P exhibits regular bouncing solutions in both isotropic and anisotropic cases for a wide range of equations of state, including dust (for a<0) and radiation (for arbitrary a). It thus represents a purely gravitational solution to the big bang singularity and anisotropy problems of general relativity without the need for exotic (w>1) sources of matter/energy or extra degrees of freedom.
|
Batool, A., Malik Sultan, A., Olmo, G. J., & Rubiera-Garcia, D. (2024). Stellar structure in f(R,T) gravity: Some exact solutions. Phys. Rev. D, 110(6), 064059–6pp.
Abstract: We find some exact solutions for constant-density and quark matter equations of state in stellar structure models framed within the f(R, T) = R + lambda(KT)-T-2 theory of gravity, where R is the curvature scalar, T the trace of the stress-energy tensor, and lambda some constant. These solutions correspond to specific values of the constant lambda and represent different compactness states of the corresponding stars, though only those made of quark matter can be regarded as physical. The latter modify the compactness (Buchdahl) limit of neutron stars upward for lambda > 0 until saturating the one of black holes. Our results show that it is possible to find useful insights on stellar structure in this class of theories, a fact that could be used for obtaining constraints on limiting masses such as the minimum hydrogen burning mass.
|
Nascimento, J. R., Olmo, G. J., Porfirio, P. J., Petrov, A. Y., & Soares, A. R. (2019). Global monopole in Palatini f(R) gravity. Phys. Rev. D, 99(6), 064053–11pp.
Abstract: We consider the space-time metric generated by a global monopole in an extension of general relativity (GR) of the form f(R) = R – lambda R-2. The theory is formulated in the metric-affine (or Palatini) formalism, and exact analytical solutions are obtained. For lambda < 0, one finds that the solution has the same characteristics as the Schwarzschild black hole with a monopole charge in Einstein's GR. For lambda > 0, instead, the metric is more closely related to the Reissner-Nordstrom metric with a monopole charge and, in addition, it possesses a wormhole-like structure that allows for the geodesic completeness of the spacetime. Our solution recovers the expected limits when lambda = 0 and also at the asymptotic far limit. The angular deflection of light in this space-time in the weak field regime is also calculated.
|
Bejarano, C., Olmo, G. J., & Rubiera-Garcia, D. (2017). What is a singular black hole beyond general relativity? Phys. Rev. D, 95(6), 064043–18pp.
Abstract: Exploring the characterization of singular black hole spacetimes, we study the relation between energy density, curvature invariants, and geodesic completeness using a quadratic f(R) gravity theory coupled to an anisotropic fluid. Working in a metric-affine approach, our models and solutions represent minimal extensions of general relativity (GR) in the sense that they rapidly recover the usual Reissner-Nordstrm solution from near the inner horizon outwards. The anisotropic fluid helps modify only the innermost geometry. Depending on the values and signs of two parameters on the gravitational and matter sectors, a breakdown of the correlations between the finiteness/ divergence of the energy density, the behavior of curvature invariants, and the (in) completeness of geodesics is obtained. We find a variety of configurations with and without wormholes, a case with a de Sitter interior, solutions that mimic nonlinear models of electrodynamics coupled to GR, and configurations with up to four horizons. Our results raise questions regarding what infinities, if any, a quantum version of these theories should regularize.
|
Nascimento, J. R., Olmo, G. J., Porfirio, P. J., Petrov, A. Y., & Soares, A. R. (2020). Nonlinear sigma-models in the Eddington-inspired Born-Infeld gravity. Phys. Rev. D, 101(6), 064043–11pp.
Abstract: In this paper we consider two different nonlinear sigma-models minimally coupled to Eddington-inspired Born-Infeld gravity. We show that the resultant geometries represent minimal modifications with respect to those found in GR, though with important physical consequences. In particular, wormhole structures always arise, though this does not guarantee by itself the geodesic completeness of those space-times. In one of the models, quadratic in the canonical kinetic term, we identify a subset of solutions which are regular everywhere and are geodesically complete. We discuss characteristic features of these solutions and their dependence on the relationship between mass and global charge.
|
Bambi, C., Cardenas-Avendano, A., Olmo, G. J., & Rubiera-Garcia, D. (2016). Wormholes and nonsingular spacetimes in Palatini f(R) gravity. Phys. Rev. D, 93(6), 064016–8pp.
Abstract: We reconsider the problem of f(R) theories of gravity coupled to Born-Infeld theory of electrodynamics formulated in a Palatini approach, where metric and connection are independent fields. By studying electrovacuum configurations in a static and spherically symmetric spacetime, we find solutions which reduce to their Reissner-Nordstrom counterparts at large distances but undergo important nonperturbative modifications close to the center. Our new analysis reveals that the pointlike singularity is replaced by a finite-size wormhole structure, which provides a geodesically complete and thus nonsingular spacetime, despite the existence of curvature divergences at the wormhole throat. Implications of these results, in particular for the cosmic censorship conjecture, are discussed.
|