Rosa, J. L., Lobo, F. S. N., & Olmo, G. J. (2021). Weak-field regime of the generalized hybrid metric-Palatini gravity. Phys. Rev. D, 104(12), 124030–11pp.
Abstract: In this work we explore the dynamics of the generalized hybrid metric-Palatini theory of gravity in the weak-field, slow-motion regime. We start by introducing the equivalent scalar-tensor representation of the theory, which contains two scalar degrees of freedom, and perform a conformal transformation to the Einstein frame. Linear perturbations of the metric in a Minkowskian background are then studied for the metric and both scalar fields. The effective Newton constant and the PPN parameter. of the theory are extracted after transforming back to the (original) Jordan frame. Two particular cases where the general method ceases to be applicable are approached separately. A comparison of these results with observational constraints is then used to impose bounds on the masses and coupling constants of the scalar fields.
|
Bazeia, D., Lobao, A. S., Losano, L., Menezes, R., & Olmo, G. J. (2015). Braneworld solutions for modified theories of gravity with nonconstant curvature. Phys. Rev. D, 91(12), 124006–11pp.
Abstract: We study braneworld models in the presence of scalar field in a five-dimensional geometry with a single extra dimension of infinite extent, with gravity modified to include a function of the Ricci scalar. We develop a procedure that allows us to obtain an analytical solution for the braneworld configuration in a diversity of models, in the much harder case where the Ricci scalar is a nonconstant quantity.
|
Lobo, F. S. N., Olmo, G. J., & Rubiera-Garcia, D. (2015). Crystal clear lessons on the microstructure of spacetime and modified gravity. Phys. Rev. D, 91(12), 124001–7pp.
Abstract: We argue that a microscopic structure for spacetime such as that expected in a quantum foam scenario, in which microscopic wormholes and other topological structures should play a relevant role, might lead to an effective metric-affine geometry at larger scales. This idea is supported by the role that microscopic defects play in crystalline structures. With an explicit model, we show that wormhole formation is possible in a metric-affine scenario, where the wormhole and the matter fields play a role analogous to that of defects in crystals. Such wormholes also arise in Born-Infeld gravity, which is favored by an analogy with the estimated mass of a point defect in condensed matter systems. We also point out that in metric-affine geometries, Einstein's equations with an effective cosmological constant appear as an attractor in the vacuum limit for a vast family of theories of gravity. This illustrates how lessons from solid state physics can be useful in unveiling the properties of the microcosmos and defining new avenues for modified theories of gravity.
|
Almeida, C. A. S., Lima, F. C. E., Mishra, S. S., Olmo, G. J., & Sahoo, P. K. (2024). Thick brane in mimetic-like gravity. Nucl. Phys. B, 1009, 116747–9pp.
Abstract: We analyze a five-dimensional braneworld governed by a mimetic-like gravity, a plausible candidate for explaining dark matter. Within this scenario, we examine Friedmann-Lemaitre-Robertson-Walker (FLRW) branes and find that constant curvature and Minkowskian solutions are possible. We then show that the mimetic model leads to kink-like and lump-like thick brane solutions without the need for spontaneous symmetry breaking. Its stability against small perturbations is also verified.
|
Nascimento, J. R., Olmo, G. J., Petrov, A. Y., & Porfirio, P. J. (2024). On metric-affine bumblebee model coupled to scalar matter. Nucl. Phys. B, 1004, 116577–10pp.
Abstract: We consider the coupling of the metric-affine bumblebee gravity model to scalar matter and calculate the lower -order contributions to two -point functions of bumblebee and scalar fields in the weak gravity approximation. We also obtain the one -loop effective potentials for both scalar and vector fields.
|
Olmo, G. J., Rubiera-Garcia, D., & Sanchez-Puente, A. (2016). Impact of curvature divergences on physical observers in a wormhole space-time with horizons. Class. Quantum Gravity, 33(11), 115007–12pp.
Abstract: The impact of curvature divergences on physical observers in a black hole space-time, which, nonetheless, is geodesically complete is investigated. This space-time is an exact solution of certain extensions of general relativity coupled to Maxwell's electrodynamics and, roughly speaking, consists of two Reissner-Nordstrom (or Schwarzschild or Minkowski) geometries connected by a spherical wormhole near the center. We find that, despite the existence of infinite tidal forces, causal contact is never lost among the elements making up the observer. This suggests that curvature divergences may not be as pathological as traditionally thought.
|
Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2010). Reply to "Comment on 'Insensitivity of Hawking radiation to an invariant Planck-scale cutoff' ''. Phys. Rev. D, 81(10), 108502–3pp.
Abstract: We clarify the relationship between the conclusions of the previous Comment of A. Helfer [A. Helfer, preceding Comment, Phys. Rev. D 81, 108501 (2010)] and that of our Brief Report [I. Agullo, J. Navarro-Salas, G. J. Olmo, and L. Parker, Phys. Rev. D 80, 047503 (2009).].
|
Agullo, I., Navarro-Salas, J., Olmo, G. J., & Parker, L. (2011). Remarks on the renormalization of primordial cosmological perturbations. Phys. Rev. D, 84(10), 107304–5pp.
Abstract: We briefly review the need to perform renormalization of inflationary perturbations to properly work out the physical power spectra. We also summarize the basis of (momentum-space) renormalization in curved spacetime and address several misconceptions found in recent literature on this subject.
|
Barrientos, E., Lobo, F. S. N., Mendoza, S., Olmo, G. J., & Rubiera-Garcia, D. (2018). Metric-affine f(R,T) theories of gravity and their applications. Phys. Rev. D, 97(10), 104041–10pp.
Abstract: We study f (R, T) theories of gravity, where T is the trace of the energy-momentum tensor T-mu v, with independent metric and affine connection (metric-affine theories). We find that the resulting field equations share a close resemblance with their metric-affine f(R) relatives once an effective energy-momentum tensor is introduced. As a result, the metric field equations are second-order and no new propagating degrees of freedom arise as compared to GR, which contrasts with the metric formulation of these theories, where a dynamical scalar degree of freedom is present. Analogously to its metric counterpart, the field equations impose the nonconservation of the energy-momentum tensor, which implies nongeodesic motion arid consequently leads to the appearance of an extra force. The weak field limit leads to a modified Poisson equation formally identical to that found in Eddington-inspired Born-Infeld gravity. Furthermore, the coupling of these gravity theories to perfect fluids, electromagnetic, and scalar fields, and their potential applications arc discussed.
|
Olmo, G. J., Sanchis-Alepuz, H., & Tripathi, S. (2012). Stellar structure equations in extended Palatini gravity. Phys. Rev. D, 86(10), 104039–8pp.
Abstract: We consider static spherically symmetric stellar configurations in Palatini theories of gravity in which the Lagrangian is an unspecified function of the form f(R, R μnu R μnu). We obtain the Tolman-Oppenheimer-Volkov equations corresponding to this class of theories and show that they recover those of f(R) theories and general relativity in the appropriate limits. We show that the exterior vacuum solutions are of Schwarzschild-de Sitter type and comment on the possible expected modifications, as compared to general relativity, of the interior solutions.
|