Home | << 1 2 3 4 5 6 7 8 9 10 >> [11–11] |
Abele, H. et al, Algora, A., Gonzalez-Alonso, M., & Novella, P. (2023). Particle physics at the European Spallation Source. Phys. Rep., 1023, 1–84.
Abstract: Presently under construction in Lund, Sweden, the European Spallation Source (ESS) will be the world's brightest neutron source. As such, it has the potential for a particle physics program with a unique reach and which is complementary to that available at other facilities. This paper describes proposed particle physics activities for the ESS. These encompass the exploitation of both the neutrons and neutrinos produced at the ESS for high precision (sensitivity) measurements (searches).
|
Double Chooz collaboration(Abe, Y. et al), & Novella, P. (2016). Measurement of theta(13) in Double Chooz using neutron captures on hydrogen with novel background rejection techniques. J. High Energy Phys., 01(1), 163–29pp.
Abstract: The Double Chooz collaboration presents a measurement of the neutrino mixing angle theta(13) using reactor (nu) over bar (e) observed via the inverse beta decay reaction in which the neutron is captured on hydrogen. This measurement is based on 462.72 live days data, approximately twice as much data as in the previous such analysis, collected with a detector positioned at an average distance of 1050m from two reactor cores. Several novel techniques have been developed to achieve significant reductions of the backgrounds and systematic uncertainties. Accidental coincidences, the dominant background in this analysis, are suppressed by more than an order of magnitude with respect to our previous publication by a multi-variate analysis. These improvements demonstrate the capability of precise measurement of reactor (nu) over bar (e) without gadolinium loading. Spectral distortions from the (nu) over bar (e) reactor flux predictions previously reported with the neutron capture on gadolinium events are confirmed in the independent data sample presented here. A value of sin(2) 2 theta(13) = 0.095(0.039)(+0.039)(stat+syst) is obtained from a fit to the observed event rate as a function of the reactor power, a method insensitive to the energy spectrum shape. A simultaneous fit of the hydrogen capture events and of the gadolinium capture events yields a measurement of sin(2) 2 theta(13) = 0.088 +/- 0.033(stat+syst).
|
Double Chooz collaboration(Abe, Y. et al), & Novella, P. (2016). Characterization of the spontaneous light emission of the PMTs used in the Double Chooz experiment. J. Instrum., 11, P08001–25pp.
Abstract: During the commissioning of the first of the two detectors of the Double Chooz experiment, an unexpected and dominant background caused by the emission of light inside the optical volume has been observed. A specific study of the ensemble of phenomena called Light Noise has been carried out in-situ, and in an external laboratory, in order to characterize the signals and to identify the possible processes underlying the effect. Some mechanisms of instrumental noise originating from the PMTs were identified and it has been found that the leading one arises from the light emission localized on the photomultiplier base and produced by the combined effect of heat and high voltage across the transparent epoxy resin covering the electric components. The correlation of the rate and the amplitude of the signal with the temperature has been observed. For the first detector in operation the induced background has been mitigated using online and offline analysis selections based on timing and light pattern of the signals, while a modification of the photomultiplier assembly has been implemented for the second detector in order to blacken the PMT bases.
|
Double Chooz collaboration(Abe, Y. et al), & Novella, P. (2016). Muon capture on light isotopes measured with the Double Chooz detector. Phys. Rev. C, 93(5), 054608–18pp.
Abstract: Using the Double Chooz detector, designed to measure the neutrino mixing angle theta(13), the products of mu(-) capture on C-12, C-13, N-14, and O-16 have been measured. Over a period of 489.5 days, 2.3 x 10(6) stopping cosmic mu(-) have been collected, of which 1.8 x 10(5) captured on carbon, nitrogen, or oxygen nuclei in the inner detector scintillator or acrylic vessels. The resulting isotopes were tagged using prompt neutron emission (when applicable), the subsequent beta decays, and, in some cases, beta-delayed neutrons. The most precise measurement of the rate of C-12(mu(-), nu)B-12 to date is reported: 6.57(-0.21)(+0.11) x 10(3) s(-1), or (17.35(-0.59)(+0.35))% of nuclear captures. By tagging excited states emitting gamma s, the ground state transition rate to B-12 has been determined to be 5.68(-0.23)(+0.14) x 10(3) s(-1). The heretofore unobserved reactions C-12(mu(-), nu alpha)Li-8, C-13(mu(-), nu n alpha)Li-8, and C-13(mu(-), nu n)B-12 are measured. Further, a population of beta n decays following stopping muons is identified with 5.5 sigma significance. Statistics limit our ability to identify these decays definitively. Assuming negligible production of He-8, the reaction C-13(mu(-), nu alpha)Li-9 is found to be present at the 2.7 sigma level. Limits are set on a variety of other processes.
|
Double Chooz collaboration(Abrahao, T. et al), & Novella, P. (2021). Search for signatures of sterile neutrinos with Double Chooz. Eur. Phys. J. C, 81(8), 775–14pp.
Abstract: We present a search for signatures of neutrino mixing of electron anti-neutrinos with additional hypothetical sterile neutrino flavors using the Double Chooz experiment. The search is based on data from 5 years of operation of Double Chooz, including 2 years in the two-detector configuration. The analysis is based on a profile likelihood, i.e. comparing the data to the model prediction of disappearance in a data-to-data comparison of the two respective detectors. The analysis is optimized for a model of three active and one sterile neutrino. It is sensitive in the typical mass range 5 x 10(-3) eV(2) less than or similar to Delta m(41)(2) less than or similar to 3 x 10(-1) eV(2) for mixing angles downto sin(2) 2 theta(14) greater than or similar to 0.02. No significant disappearance additionally to the conventional disappearance related to theta(13) is observed and correspondingly exclusion bounds on the sterile mixing parameter theta(14) as a function of Delta m(41)(2) are obtained.
|
Double Chooz collaboration(Abrahao, T. et al), & Novella, P. (2021). Reactor rate modulation oscillation analysis with two detectors in Double Chooz. J. High Energy Phys., 01(1), 190–18pp.
Abstract: A theta (13) oscillation analysis based on the observed antineutrino rates at the Double Chooz far and near detectors for different reactor power conditions is presented. This approach provides a so far unique simultaneous determination of theta (13) and the total background rates without relying on any assumptions on the specific background contributions. The analysis comprises 865 days of data collected in both detectors with at least one reactor in operation. The oscillation results are enhanced by the use of 24.06 days (12.74 days) of reactor-off data in the far (near) detector. The analysis considers the nu <mml:mo stretchy=“true”><overbar></mml:mover>e interactions up to a visible energy of 8.5 MeV, using the events at higher energies to build a cosmogenic background model considering fast-neutrons interactions and Li-9 decays. The background-model-independent determination of the mixing angle yields sin(2)(2 theta (13)) = 0.094 0.017, being the best-fit total background rates fully consistent with the cosmogenic background model. A second oscillation analysis is also performed constraining the total background rates to the cosmogenic background estimates. While the central value is not significantly modified due to the consistency between the reactor-off data and the background estimates, the addition of the background model reduces the uncertainty on theta (13) to 0.015. Along with the oscillation results, the normalization of the anti-neutrino rate is measured with a precision of 0.86%, reducing the 1.43% uncertainty associated to the expectation.
|
Double Chooz collaboration(Abrahao, T. et al), & Novella, P. (2018). Novel event classification based on spectral analysis of scintillation waveforms in Double Chooz. J. Instrum., 13, P01031–26pp.
Abstract: Liquid scintillators are a common choice for neutrino physics experiments, but their capabilities to perform background rejection by scintillation pulse shape discrimination is generally limited in large detectors. This paper describes a novel approach for a pulse shape based event classification developed in the context of the Double Chooz reactor antineutrino experiment. Unlike previous implementations, this method uses the Fourier power spectra of the scintillation pulse shapes to obtain event-wise information. A classification variable built from spectral information was able to achieve an unprecedented performance, despite the lack of optimization at the detector design level. Several examples of event classification are provided, ranging from differentiation between the detector volumes and an efficient rejection of instrumental light noise, to some sensitivity to the particle type, such as stopping muons, ortho-positronium formation, alpha particles as well as electrons and positrons. In combination with other techniques the method is expected to allow for a versatile and more efficient background rejection in the future, especially if detector optimization is taken into account at the design level.
|
Double Chooz collaboration(Abrahao, T. et al), & Novella, P. (2017). Cosmic-muon characterization and annual modulation measurement with Double Chooz detectors. J. Cosmol. Astropart. Phys., 02(2), 017–20pp.
Abstract: A study on cosmic muons has been performed for the two identical near and far neutrino detectors of the Double Chooz experiment, placed at similar to 120 and similar to 300 m. w.e. underground respectively, including the corresponding simulations using the MUSIC simulation package. This characterization has allowed us to measure the muon flux reaching both detectors to be (3.64 +/- 0.04) x 10(-4) cm(-2) s(-1) for the near detector and (7.00 +/- 0.05) x 10(-5) cm(-2) s(-1) for the far one. The seasonal modulation of the signal has also been studied observing a positive correlation with the atmospheric temperature, leading to an effective temperature coefficient of alpha(T) = 0.212 +/- 0.024 and 0.355 +/- 0.019 for the near and far detectors respectively. These measurements, in good agreement with expectations based on theoretical models, represent one of the first measurements of this coefficient in shallow depth installations.
Keywords: cosmic ray experiments; neutrino detectors
|
Double Chooz collaboration(de Kerret, H. et al), & Novella, P. (2022). The Double Chooz antineutrino detectors. Eur. Phys. J. C, 82(9), 804–34pp.
Abstract: This article describes the setup and performance of the near and far detectors in the Double Chooz experiment. The electron antineutrinos of the Chooz nuclear power plant were measured in two identically designed detectors with different average baselines of about 400 m and 1050 m from the two reactor cores. Over many years of data taking the neutrino signals were extracted from interactions in the detectors with the goal of measuring a fundamental parameter in the context of neutrino oscillation, the mixing angle 013. The central part of the Double Chooz detectors was a main detector comprising four cylindrical volumes filled with organic liquids. From the inside towards the outside there were volumes con- taining gadolinium-loaded scintillator, gadolinium-free scintillator, a buffer oil and, optically separated, another liquid scintillator acting as veto system. Above this main detector an additional outer veto system using plastic scintillator strips was installed. The technologies developed in Double Chooz were inspiration for several other antineutrino detectors in the field. The detector design allowed implementation of efficient background rejection techniques including use of pulse shape information provided by the data acquisition system. The Double Chooz detectors featured remarkable stability, in particular for the detected photons, as well as high radiopurity of the detector components.
|
Double Chooz collaboration(de Kerret, H. et al), & Novella, P. (2020). Double Chooz theta(13) measurement via total neutron capture detection. Nat. Phys., 16, 558–564.
Abstract: Neutrinos were assumed to be massless particles until the discovery of the neutrino oscillation process. This phenomenon indicates that the neutrinos have non-zero masses and the mass eigenstates (nu(1), nu(2), nu(3)) are mixtures of their flavour eigenstates (nu(e), nu(mu), nu(tau)). The oscillations between different flavour eigenstates are described by three mixing angles (theta(12), theta(23), theta(13)), two differences of the squared neutrino masses of the nu(2)/nu(1) and nu(3)/nu(1) pairs and a charge conjugation parity symmetry violating phase delta(CP). The Double Chooz experiment, located near the Chooz Electricite de France reactors, measures the oscillation parameter theta(13) using reactor neutrinos. Here, the Double Chooz collaboration reports the measurement of the mixing angle theta(13) with the new total neutron capture detection technique from the full data set, yielding sin(2)(2 theta(13)) = 0.105 +/- 0.014. This measurement exploits the multidetector configuration, the isoflux baseline and data recorded when the reactors were switched off. In addition to the neutrino mixing angle measurement, Double Chooz provides a precise measurement of the reactor neutrino flux, given by the mean cross-section per fission <sigma(f)& rang; = (5.71 +/- 0.06) x 10(-43) cm(2) per fission, and reports an empirical model of the distortion in the reactor neutrino spectrum. The Double Chooz collaboration reports the neutrino oscillation parameter theta(13) from a measurement of the disappearance of reactor anti-electron neutrinos with the total neutron capture technique.
|