|
Baru, V., Dong, X. K., Du, M. L., Filin, A., Guo, F. K., Hanhart, C., et al. (2022). Effective range expansion for narrow near-threshold resonances. Phys. Lett. B, 833, 137290–7pp.
Abstract: We discuss some general features of the effective range expansion, the content of its parameters with respect to the nature of the pertinent near-threshold states and the necessary modifications in the presence of coupled channels, isospin violations and unstable constituents. As illustrative examples, we analyse the properties of the chi(c1)(3872) and T-cc(+) states supporting the claim that these exotic states have a predominantly molecular nature.
|
|
|
Du, M. L., Baru, V., Dong, X. K., Filin, A., Guo, F. K., Hanhart, C., et al. (2022). Coupled-channel approach to T-cc(+) including three-body effects. Phys. Rev. D, 105(1), 014024–19pp.
Abstract: A coupled-channel approach is applied to the charged tetraquark state T-cc(+). recently discovered by the LHCb Collaboration. The parameters of the interaction are fixed by a fit to the observed line shape in the three-body (DD0)-D-0 pi(+) channel. Special attention is paid to the three-body dynamics in the T-cc(+) due to the finite life time of the D*. An approach to the T-cc(+) is argued to be self-consistent only if both manifestations of the three-body dynamics, the pion exchange between the D and D* mesons and the finite D* width, are taken into account simultaneously to ensure that three-body unitarity is preserved. This is especially important to precisely extract the pole position in the complex energy plane whose imaginary part is very sensitive to the details of the coupled-channel scheme employed. The (DD0)-D-0 and (DD+)-D-0 invariant mass distributions, predicted based on this analysis, are in good agreement with the LHCb data. The low-energy expansion of the D* D scattering amplitude is performed and the low-energy constants (the scattering length and effective range) are extracted. The compositeness parameter of the T-cc(+) is found to be close to unity, which implies that the T-cc(+) is a hadronic molecule generated by the interactions in the D*D-+(0) and D*D-0(+) channels. Employing heavy-quark spin symmetry, an isoscalar D* D* molecular partner of the T-cc(+) with J(P) = 1(+ )is predicted under the assumption that the DD* -D* D* coupled-channel effects can be neglected.
|
|
|
Du, M. L., Filin, A., Baru, V., Dong, X. K., Epelbaum, E., Guo, F. K., et al. (2023). Role of Left-Hand Cut Contributions on Pole Extractions from Lattice Data: Case Study for Tcc(3875)+. Phys. Rev. Lett., 131(13), 131903–7pp.
Abstract: We discuss recent lattice data for the T-cc(3875)(+) state to stress, for the first time, a potentially strong impact of left-hand cuts from the one-pion exchange on the pole extraction for near-threshold exotic states. In particular, if the left-hand cut is located close to the two-particle threshold, which happens naturally in the DD* system for the pion mass exceeding its physical value, the effective-range expansion is valid only in a very limited energy range up to the cut and as such is of little use to reliably extract the poles. Then, an accurate extraction of the pole locations requires the one-pion exchange to be implemented explicitly into the scattering amplitudes. Our findings are general and potentially relevant for a wide class of hadronic near-threshold states.
|
|
|
Shi, P. P., Baru, V., Guo, F. K., Hanhart, C., & Nefediev, A. (2024). Production of the X(4014) as the Spin-2 Partner of X(3872) in e + e – Collisions. Chin. Phys. Lett., 41(3), 031301–7pp.
Abstract: In 2021, the Belle collaboration reported the first observation of a new structure in the psi(2S)gamma final state produced in the two-photon fusion process. In the hadronic molecule picture, this new structure can be associated with the shallow isoscalar D*D* bound state and as such is an excellent candidate for the spin-2 partner of the X(3872) with the quantum numbers J(PC) = 2(++) conventionally named X-2. In this work we evaluate the electronic width of this new state and argue that its nature is sensitive to its total width, the experimental measurement currently available being unable to distinguish between different options. Our estimates demonstrate that the planned Super tau-Charm Facility offers a promising opportunity to search for and study this new state in the invariant mass distributions for the final states J/psi gamma and psi(2S)gamma.
|
|