|
Romero-Barrientos, J., Marquez Damian, J. I., Molina, F., Zambra, M., Aguilera, P., Lopez-Usquiano, F., et al. (2022). Calculation of kinetic parameters beta eff and L with modified open source Monte Carlo code OpenMC(TD). Nucl. Eng. Technol., 54(3), 811–816.
Abstract: This work presents the methodology used to expand the capabilities of the Monte Carlo code OpenMC for the calculation of reactor kinetic parameters: effective delayed neutron fraction beff and neutron generation time L. The modified code, OpenMC(Time-Dependent) or OpenMC(TD), was then used to calculate the effective delayed neutron fraction by using the prompt method, while the neutron generation time was estimated using the pulsed method, fitting L to the decay of the neutron population. OpenMC(TD) is intended to serve as an alternative for the estimation of kinetic parameters when licensed codes are not available. The results obtained are compared to experimental data and MCNP calculated values for 18 benchmark configurations.
|
|
|
Tarifeño-Saldivia, A., Calvino, F., De Blas, A., Brusasco, B., Casanovas-Hoste, A., Cives, A. M., et al. (2024). Ambient dosimetry in pulsed neutron fields with LINrem detectors. Radiat. Phys. Chem., 224, 112101–7pp.
Abstract: The status of the LINrem project is presented, focusing on the development of innovative neutron dosimeters with enhanced energy sensitivity, time resolution, and portability. Designed to meet the technical demands of radiation protection in modern particle and nuclear facilities, these dosimeters are discussed in detail. Results from experimental campaigns showcasing their efficacy in pulsed fields generated by fusion plasmas and high-intensity pulsed lasers are presented. Additionally, prospects and future plans for the LINrem project are outlined.
|
|